《 短文本数据理解》——2.5小结

短文本理解之属性打分
本书章节介绍了一种从多个数据源中提取属性并利用概率进行打分的算法框架。该方法区别于传统的实体为基础的方式,更侧重于实体的多义性及概念模式聚合。通过多种数据源获取属性信息,并采用Pairwise排序算法实现属性得分聚合。

本节书摘来自华章出版社《短文本数据理解》一书中的第2章,第2.5节,作者:王仲远 编著,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

2.5小结

本章提出一个从多数据源提取属性并通过概率为属性打分的算法框架。同以往基于实体的方法不同,新的方法强调实体的歧义性,并与基于概念的模式聚合。这项工作创新地将两种模式结合在一起,并通过多重数据源获取属性,依靠Pairwise排序算法聚合属性得分。总而言之,本工作能得到严谨而实用的属性典型度得分,用以支持上层短文本理解推理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值