[leetcode-598-Range Addition II]

本文介绍了一个算法问题,即给定一个初始为0的m*n矩阵,通过一系列更新操作后,如何找出矩阵中最大整数的数量。更新操作由一个二维数组表示,每个操作包括两个整数a和b,表示所有0<=i<a且0<=j<b的M[i][j]应该增加1。文章提供了一种解决方案,通过记录每次操作覆盖的最小行和列,最终返回这些操作共同覆盖的矩阵区域大小。

Given an m * n matrix M initialized with all 0's and several update operations.

Operations are represented by a 2D array, and each operation is represented by an array with two positive integers a and b, which means M[i][j] should be added by one for all 0 <= i < a and 0 <= j < b.

You need to count and return the number of maximum integers in the matrix after performing all the operations.

Example 1:
Input:
m = 3, n = 3
operations = [[2,2],[3,3]]
Output: 4
Explanation:
Initially, M =
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0]]

After performing [2,2], M =
[[1, 1, 0],
[1, 1, 0],
[0, 0, 0]]

After performing [3,3], M =
[[2, 2, 1],
[2, 2, 1],
[1, 1, 1]]
So the maximum integer in M is 2, and there are four of it in M. So return 4.
Note:
The range of m and n is [1,40000].
The range of a is [1,m], and the range of b is [1,n].
The range of operations size won't exceed 10,000.

思路:

思考可以发现,矩阵越靠近左上角的元素值越大,因为要加1的元素 行和列索引是从0开始的。

那么只需要找到操作次数最多的元素位置即可。而操作次数最多的元素肯定是偏向于靠近矩阵左上角的。

int maxCount(int m, int n, vector<vector<int> >& ops) 
{
        int minrow = 50000,mincol =50000;
    for(int i =0;i<ops.size();i++)
    {
      minrow =min(minrow,ops[i][0]);
      mincol = min(mincol,ops[i][1]);
    }
    minrow = min(minrow,m);
    mincol = min(mincol,n);
    return minrow*mincol;
}

 

转载于:https://www.cnblogs.com/hellowooorld/p/6915320.html

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值