FPGA图案--数字表示(代码+波形)

本文探讨了数字逻辑系统中的三种数制表示方法:原码、反码和补码。详细介绍了每种表示法的特点及其在加减乘除运算中的表现。特别指出补码在加法运算中的优势及原码在乘法运算中的便捷性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在数字逻辑系统,仅仅存在高低。所以用它只代表一个整数数字。并且有3代表性的种类。这是:原码表示(符号加绝对值值)、反码表示(加-minus标志)而补码(符号加补)。这三个在FPGA中都有着广泛的应用。以下分别讨论。

1、原码表示法

原码表示法是机器数的一种简单的表示法。採用符号位级联绝对值的方法表示数字。其最高位为符号位,用0表示正数,1表示负数;其余部分为绝对数值部分。原码一般用二进制形式表示。

比如,X1 = +1010110,X2 = -1001010,则其原码分别为:01010110和11001010

原码表示数的范围与二进制位数有关。当用8位二进制来表示小数原码时,其表示范围:最大值为0.1111111,其真值约为10进制中的0.99;最小值为1.1111111。其真值约为十进制的-0.99。

当用8位二进制来表示整数原码时。其表示范围:最大值为01111111。其真值为十进制的127;最小值为11111111。其真值为十进制的-127。

在原码表示法中。对0有两种表示形式,分别记为+0和-0,以8比特数据为例,其对应的表示为:+0=00000000、-0=10000000。

2、反码表示法

反码可由原码得到。

假设数字是正数,则其反码与原码一样。假设数字是负数,则其反码是对它的原码(符号位除外)各位取反而得到的。

比如:X1 = +1010110, X2=-1001010,则其对应的反码为01010110、10110101。

3、补码表示法

补码表示法师实际中应用最广泛的数字表示法。其表示规则例如以下:若是正数。补码、反码和原码的表示是一样的。若是负数,补码、反码和原码的表示都不一样。

由反码与原码之间的关键,负数的补码等于其反码在最低位加1。

4、各类表示方法小结

原码的长处就是乘除运算方便。不论正负数,乘除运算都一样,并以符号位决定结果的正负号;若做加法则须要推断两数符号是否同样。若作减法,还须要推断两数绝对值的大小,以使大数减小数。

补码的长处是。加法运算方便,不论数的正负都可直接相加。而符号位相同參加运算。

例:给出各类码字表示法的基本加法运算实例,并说明各自特点

(1)首先给出原码的运算演示样例。当中()d代表十进制数。

首先给出一个原码的减法计算实例,完毕“1 + (-1)= 0“”的操作。

(1)d + (-1)d = (0)d

假设读者直接利用原码来完毕上式运算,会发现用符号位的原码进行在加减运算的时候就会出现故障。将数据以8比特的表示形式为例,

(00000001)原 + (10000001)原 = (10000001)原 = (-2)d

计算结果是不对的,问题在于两点:首先。负数的符号位直接改变了计算结果符号;其次,绝对值部分计算也不对。

这说明原码无法直接完毕正数和负数的加法。

(2)既然,原码不能完毕正、负数相加。那么反码形式能够完毕此操作吗?仍然以”1 + (-1) = 0“ 为例,其对应的反码表达式例如以下:

(00000000)反 + (11111110)反 = (11111111)反 = (-0)d

则发现问题出如今+0和-0上。由于实际的计算中的零没有正负之分的。但上式标明了反码完毕正、负数相加后。其绝对值部分是正确的。因此能正确完毕正、负数相加的表达形式必然包括反码的特性。

(3)最后给出补码的相关特性说明,负数的补码就是对反码加1,而正数不变。

以8比特数据为例。通过(-128)d取代了(-10)d。所以其表示范围为【-128,127】。从直观上。补码消除了(+0)和(-0)。而且具备反码特点,那么到底其能完毕正、负加法运算吗?答案是肯定的,以下给出详细实例,所看到的

(00000001)补 + (11111111)补 = (00000000)补 = (0)d

基于以上讨论,能够得到一个基本结论:仅仅有补码才干正确完毕正负加法运算,并将减法运算转化为加法运算,从而简化运算规则。

但对于乘法操作。则以原码形式计算是最方便的。以下有实例。


演示1:原码进行乘法运算 -2 * 2 = -4

module mul(
		input clk,
		input rstn,
		input [7:0] a,
		input [7:0] b,
		
		output [14:0] q_mul,
		output reg [8:0] q_add,
		output reg[7:0] ra,
    output reg[7:0] rb
    );
    
    
    reg [13:0] rmul;
    
    always @(posedge clk or negedge rstn)
    		if(!rstn)
    			begin
    				q_add <= 0;
    				ra <= 0;
    				rb <= 0;
    				
    				rmul <= 0;
    			end
    		else begin
    			
    			//q_mul <= a*b;
    			if(a[7]==1)
    				ra = {a[7],~a[6:0] + 1};
    			else
    				ra = a;
    			if(b[7]==1)
    				rb = {b[7],~b[6:0] + 1};
    			else
    				rb = b;
    			rmul <= ra[6:0]*rb[6:0];
    			
    			
    			q_add <= {a[7],a} + {b[7],b};
    		end
    		
    		assign q_mul = {a[7]^b[7],rmul};
    		
endmodule

演示2:通过reg signed实现

module signedMul(
		input clk,
		input rstn,
		input [7:0] a,
		input [7:0] b,
		output [15:0] q
    );
    
     reg signed[7:0] ra;
     reg signed[7:0] rb;
    
    always @(posedge clk or negedge rstn) begin
    		if(~rstn) begin
    			ra <= 0;
    			rb <= 0;
    		end
    		else begin
    			ra <= a;
    			rb <= b;
    		end
    end
		assign q = ra * rb;

endmodule



























版权声明:本文博主原创文章,博客,未经同意不得转载。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值