- 题目描述:
-
给定一个数组,判断数组内是否存在一个连续区间,使其和恰好等于给定整数k。
- 输入:
-
输入包含多组测试用例,每组测试用例由一个整数n(1<=n<=10000)开头,代表数组的大小。
接下去一行为n个整数,描述这个数组,整数绝对值不大于100。
最后一行为一个整数k(大小在int范围内)。
- 输出:
-
对于每组测试用例,若存在这个连续区间,输出其开始和结束的位置,s,e(s <= e)。
若存在多个符合条件的输出,则输出s较小的那个,若仍然存在多个,输出e较小的那个。
若不存在,直接输出"No"。
- 样例输入:
-
5 -1 2 3 -4 9 5 3 -1 2 -3 7 2 -1 1 0
- 样例输出:
-
2 3 No 1 2
思路
1. o(n^n) 复杂度算法超时
2. 正解. D[i] 记录 0~i 的和, 若 D[j] - D[i] == k, 那么 i~j 是一个可行解. 对 D[i] 进行索引排序后枚举 i 并使用二分查找 j. 时间复杂度为 o(nlogn)
代码 未通过九度测试
#include <iostream>
#include <stdio.h>
#include <algorithm>
using namespace std;
class Node {
public:
int i, di;
Node(int _i, int _di):i(_i), di(_di) {
}
Node() {
Node(0, 0);
}
bool operator<(const Node &ths) const {
if(this->di == ths.di)
return this->i < ths.i;
return this->di < ths.di;
}
};
int d[10010];
int arr[10010];
Node nodes[10010];
int st, ed;
int binary_search(int low, int high, int target, int &left, int &right) {
int low1 = low, high1 = high;
// find the left part of array
while(low1 <= high1) {
int mid = (low1+high1)>>1;
if(nodes[mid].di < target) {
low1 = mid + 1;
}else{
high1 = mid -1;
}
}
left = low1;
low1 = low, high1 = high;
while(low1 <= high1) {
int mid = (low1+high1)>>1;
if(nodes[mid].di <= target) {
low1 = mid + 1;
}else{
high1 = mid -1;
}
}
right = high1;
if(left < low || right > high || nodes[left].di != target)
return -1;
return 0;
}
int main() {
freopen("testcase.txt", "r", stdin);
int n, k;
while(scanf("%d", &n) != EOF) {
scanf("%d", arr);
nodes[0].i = 0;
nodes[0].di = arr[0];
d[0] = arr[0];
for(int i = 1; i < n; i ++) {
scanf("%d", arr+i);
d[i] = d[i-1]+arr[i];
nodes[i].i = i;
nodes[i].di = d[i];
}
scanf("%d", &k);
sort(nodes, nodes+n);
int minst = 0, mined = 0x3f3f3f3f;
for(int i = 0; i < n; i ++) {
int target;
if(i == 0) {
target = k;
}else{
target = d[i-1] + k;
}
int left, right;
if(binary_search(0, n-1, target, left, right) == -1) {
// didn't find
continue;
}else {
for(int j = left; j <= right; j ++) {
int index = nodes[j].i;
if(index < i) continue;
minst = i;
mined = index;
break;
}
break;
}
}
if(mined != 0x3f3f3f3f)
printf("%d %d\n",minst+1, mined+1 );
else
printf("No\n");
}
return 0;
}