混沌数学之二维logistic模型

本文深入探讨了二维Logistic映射的数学方程、构造方法及其实现过程,揭示了混沌现象背后的分形结构和吸引盆特性。通过分析不同控制参数下映射的行为,展现了其向混沌转变的过程,为理解复杂高维动力系统提供了理论依据。附带的DEMO演示了二维映射的动态变化,直观展示了混沌理论在实际场景中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

      上一节讲了logistic混沌模型,这一节对其扩充一下讲二维 Logistic映射.它起着从一维到高维的衔接作用,对二维映射中混沌现象的研究有助于认识和预测更复杂的高维动力系统的性态。通过构造一次藕合和二次祸合的二维Logistic映射研究了二维Logistic映射通向混沌的道路,分析了其分形结构和吸引盆的性质,指出选择不同的控制参数,二维映射可分别按Feigenbaum途径等走向混沌,并且指出在控制参数空间中的较大的区域。

      二维滞后Logistic映射的数学方程为: x(n+1)=y(n);y(N+1)=u*y(n)*(1-x(n)), u属于(0,2.28),[x,y]属于(0,1)

      相关DEMO参见:混沌数学之离散点集图形DEMO

其代码与上一节的代码很相似:

// http://www.baike.com/wiki/logistic%E6%A8%A1%E5%9E%8B
class Logistic2DEquation : public DiscreteEquation
{
public:
    Logistic2DEquation()
    {
        m_StartX = 0.5f;
        m_StartY = m_StartX;

        m_ParamA = 2.003f;
    }

    void IterateValue(float x, float y, float& outX, float& outY) const
    {
        outX = y;
        outY = m_ParamA*y*(1-x);
    }

    bool IsValidParamA() const {return true;}
};

其图形与上一节的大不一样:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值