多层感知机MLP的gluon版分类minist

本文介绍了一个使用Gluon库实现的多层感知器(MLP)模型,该模型用于Fashion MNIST数据集上的图像分类任务。通过定义网络结构、初始化参数、设置损失函数和优化器,进行5轮训练,最终达到了较高的测试准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

MLP_Gluon

 

 

In [2]:
import gluonbook as gb
from mxnet import gluon, init
from mxnet.gluon import loss as gloss,nn
In [4]:
net = nn.Sequential()
net.add(nn.Dense(256,activation='relu'),nn.Dense(10))
net.initialize(init.Normal(sigma=0.01))
In [5]:
batch_size = 256
train_iter, test_iter = gb.load_data_fashion_mnist(batch_size)
 

损失函数

In [6]:
loss = gloss.SoftmaxCrossEntropyLoss()
trainer = gluon.Trainer(net.collect_params(),'sgd',{'learning_rate':0.5})
num_epochs = 5
gb.train_ch3(net,train_iter,test_iter,loss,num_epochs,batch_size,None,None,trainer)
 
epoch 1, loss 0.8074, train acc 0.700, test acc 0.829
epoch 2, loss 0.4819, train acc 0.823, test acc 0.852
epoch 3, loss 0.4306, train acc 0.840, test acc 0.855
epoch 4, loss 0.3935, train acc 0.856, test acc 0.856
epoch 5, loss 0.3714, train acc 0.863, test acc 0.865
 

转载于:https://www.cnblogs.com/TreeDream/p/10021237.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值