对Faster R-CNN的理解(2)

本文深入探讨了区域建议网络(RPN)在目标检测中的核心作用,详细解析了如何通过特征图上的每个点生成多个矩形建议框,以及这些框如何被标记为正负样本用于模型训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2. 区域建议网络

区域建议网络(Regional Proposal Network, RPN),根据特征图上每一个点的向量,为这个点生成k个矩形建议框。每一个点输出的内容包括:reg层4个输出x、y、w、h,其中x、y是矩形建议框中心的目标,w、h是矩形建议框的宽度和高度,cls层输出两个数字,分别是目标、非目标的估计概率,也就是说,一个框就有6个输出。

一般在特征图上的一个点输出3种尺寸、3种比例的anchor,即一个点输出9个anchor,k=9,一般特征图的尺寸是60×40=2400,即一共产生2400×9=21600个anchor。对这20000多个anchor,以下两类分配正标签:(1)和某一个GT真实框具有最高IoU(Intersection-over-Union,交集并集之比)重叠的anchor;(2)和任意一个GT真实框的IoU超过0.7的。对于和任意一个GT真实框的IoU都小于0.3的anchor,分配负标签。其他的anchor不分配标签,也不参与训练。一个图像的损失函数是:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值