线性代数与矩阵论 习题 1.2.2

本文介绍了如何使用辗转相除法来求解两个有理系数多项式 $u(x)$ 和 $v(x)$,使得 $u(x)f(x) + v(x)g(x) = (f(x), g(x))$。具体地,通过实例展示了这一过程,包括两个多项式 $f(x) = 3x^3 - 2x^2 + x + 2$ 和 $g(x) = x^2 - x + 1$ 的情况,以及另一个多项式组 $f(x) = x^4 + 2x^3 - x^2 - 4x - 2$ 和 $g(x) = x^4 + x^3 - x^2 - 2x - 2$ 的应用。本文详细解析了求解步骤,并得出了 $(f(x), g(x))$ 的结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

试利用辗转相除法,求有理系数多项式$u(x)$和$v(x)$,使得$u(x)f(x)+v(x)g(x)=(f(x),g(x))$.


(1)$f(x)=3x^3-2x^2+x+2$,$g(x)=x^2-x+1$.

 

解:
\begin{align*}
3x^3-2x^2+x+2&=3x(x^2-x+1)+(x^2-2x+2)\\
x^2-x+1&=(x^2-2x+2)+(x-1)\\
x^2-2x+2&=x(x-1)-(x-2)\\
x-1&=x-2+1\\
\end{align*}
可见,$(f(x),g(x))=1$.由于
\begin{align*}
f(x)&=3xg(x)+(x^2-2x+2)\\
g(x)&=f(x)-3xg(x)+(x-1)\\
f(x)-3xg(x)&=x(g(x)-f(x)+3xg(x))-(x-2)\\
g(x)-f(x)+3xg(x)+f(x)-3xg(x)-x(g(x)-f(x)+3xg(x))&=1\\
\end{align*}
即$(1-x-3x^2)g(x)+xf(x)=1$

 

 



(2)$f(x)=x^4+2x^3-x^2-4x-2$,$g(x)=x^4+x^3-x^2-2x-2$.


解:
\begin{align*}
x^4+2x^3-x^2-4x-2&=(x^4+x^3-x^2-2x-2)+(x^3-2x)\\
x^4+x^3-x^2-2x-2&=x(x^3-2x)+(x^3+x^2-2x-2)\\
x^3-2x&=(x^3+x^2-2x-2)+(-x^2+2)\\
x^3+x^2-2x-2&=-x(-x^2+2)+(x^2-2)\\
-x^2+2&=-(x^2-2)\\
\end{align*}
可见,$(f(x),g(x))=x^2-2$.我们知道,
\begin{align*}
f(x)&=g(x)+x^3-2x\\
g(x)&=x[f(x)-g(x)]+(x^3+x^2-2x-2)\\
f(x)-g(x)=g(x)-x[f(x)-g(x)]+(-x^2+2)\\
g(x)-x[f(x)-g(x)]+x[f(x)-g(x)-g(x)+x[f(x)-g(x)]]=x^2-2\\
\end{align*}
即$(1-x-x^2)g(x)+x^2f(x)=x^2-2$.

转载于:https://www.cnblogs.com/yeluqing/archive/2012/11/10/3827740.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值