pandas 数据处理实例

本文介绍了一种处理CSV文件的方法,包括读取、预处理、数据填充、切片访问及统计分析等步骤。通过Python的pandas库实现,具体涉及日期时间格式转换、空值处理、切片操作和统计计算等功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

描述:行标签为日期,列标签为时间,表哥的值是 float 的数值
# 一、 读取 csv 文件
df=pd.read_csv("delay_3.csv",encoding = "utf-8")
# 二、 默认读取是行索引是 0 开始计数的,datestr 被作为文本读成了单元格数据,将datestr 转换成时间,并建立索引
# 2.1 要把 datestr 列转换成时间格式
df['datestr'] = pd.to_datetime(df['datestr'])
# 2.2 通过 set_index 重新设置新的列
df.set_index("datestr", inplace=True)
# 三、数据预处理,因为数据本身存在很多 空白数据,空白数据是 - (减号)
# 3.1 转换数据为数字类型,转换错误的数据,自动填充为 NAN
df=df.apply(pd.to_numeric, errors='coerce')
# 3.2 通过填充命令将数据填充 填充的规则是按照前一行,同一列进行填充
#print df.isnull().sum()
df=df.fillna(method='ffill')‘
# 查看下为 仍然为 null 的数据数量
#print df.isnull().sum()
#四、 通过切片进行访问,切出 这些天,每天的这些时刻的数据
df['2018-01-08':'2018-01-15','06:00':'20:00']
#五、分行和分列进行聚集操作
# 5.1 按列(时段)聚集
df.mean()
# 5.2 按日期(行)聚集
df_new=df.T
df_new.mean()
# 5.3 所有的数据取一个平均值
df.mean().mean()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值