Lindström–Gessel–Viennot lemma 应用两则

本文介绍了一种计算无边权DAG图中指定起点和终点间不相交路径数量的方法,通过计算特定矩阵的行列式来解决此类问题,并提供了两个实例:Codeforces348D和HDU5852题目的解决方案。

 

对于一张无边权的DAG图,给定n个起点和对应的n个终点,这n条不相交路径的方案数为

det() (该矩阵的行列式)

其中e(a,b)为图上a到b的方案数

 

 

codeforces 348D

[给定一张n*m带障碍的图,求从左上角到右下角不相交两条路径的方案]

[a1=(1,2) a2=(2,1) b1=(n-1,m) b2=(n,m-1) 应用该定理即可]

 

HDU 5852

[给一张n*n的图,第一行m个点对应第n行的m个点,求路径不相交的方案数]

[计算对应的行列式,注意高斯消元不要T]

[据说Q神想到是行列式之后在机房大喊一声,结果其他队伍都会做了,自己T了:D]

 

 

附录: 该定理wiki

 

 

 

 

 

转载于:https://www.cnblogs.com/jszkc/p/7309468.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值