[詹兴致矩阵论习题参考解答]习题4.12

本文通过利用矩阵理论中的几个关键定理,证明了一个关于酉不变范数的重要不等式。该不等式涉及两个矩阵的乘积与其各自幂次的范数之间的关系。

12. 设 $p,q$ 为正实数, 满足 $\dps{\frac{1}{p}+\frac{1}{q}=1}$, 则对 $A,B\in M_n$ 和酉不变范数有 $$\bex \sen{AB}\leq \sen{|A|^p}^\frac{1}{p} \sen{|B|^q}^\frac{1}{q}. \eex$$

 

 

 

证明: 由推论 4.7, $$\bex s(AB)\prec_ws(A)\circ s(B). \eex$$ 又由定理 4.20, 对任一对称规度函数 $\varphi$, $$\beex \bea \varphi(s(AB)) &\leq \varphi(s(A)\circ s(B))\\ &\leq \sez{ \varphi(s(A)^p)}^\frac{1}{p} \sez{\varphi(s(B)^q)}^\frac{1}{q}\quad\sex{\mbox{第 8 题}}\\ &=\sez{ \varphi(s(|A|^p))}^\frac{1}{p} \sez{\varphi(s(|B|^q))}^\frac{1}{q}. \eea \eeex$$ 特别取 $\varphi$ 为 Fan $k$-范数, 我们可由 Fan 支配定理得到 $$\bex \sen{AB}\leq \sen{|A|^p}^\frac{1}{p} \sen{|B|^q}^\frac{1}{q}. \eex$$

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值