LeetCode 63. Unique Paths II

解决在网格中寻找从起点到终点的唯一路径数量问题,当网格中存在障碍物时,使用动态规划方法进行求解。

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

The total number of unique paths is 2.

大致题意

在 unique paths I 基础上增加障碍物

题解

题目类型:动态规划

转移方程为:

path[i][j] = obstacleGrid[i][j] ? 0 : path[i - 1][j] + path[i][j - 1];

解如下

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();
        vector<vector<int>> path(m, vector<int>(n, 1));
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < obstacleGrid[i].size(); j++) {
                if (obstacleGrid[i][j]) {
                    path[i][j] = 0;
                } else if (i < 1 && j < 1) {
                    path[i][j] = !obstacleGrid[i][j];
                } else if (i < 1) {
                    path[i][j] = path[i][j - 1];
                } else if (j < 1) {
                    path[i][j] = path[i - 1][j];
                } else {
                    path[i][j] = path[i - 1][j] + path[i][j - 1];
                }
            }
        }
        return path[m - 1][n - 1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值