[再寄小读者之数学篇](2014-05-23 递增函数的右极限)

设 $f(x)$ 是定义在 $[a,b]$ 上的增函数. 再设 $x_0\in [a,b)$, 而点列 $\sed{x_n}$ 满足: $x_n>x_0$, $\dps{\vlm{n}x_n=x_0}$. 求证: $\dps{\vlm{n}f(x_n)}$ 存在.

证明: 设 $A=f(x_0+0)$, 则由定义, $$\bex \forall\ \ve>0,\ \exists\ \delta>0,\ x_0<x<x_0+\delta\ra |f(x)-A|<\ve. \eex$$ 对该 $\delta>0$, 由 $\dps{\vlm{n}x_n=x_0}$ 知 $$\bex \exists\ N,\ n\geq N\ra x_0<x_n<x_0+\delta\ra |f(x_n)-A|<\ve. \eex$$ 这即说明结论.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值