企业级 SpringBoot 教程 (二十四)springboot整合docker

这篇文篇介绍,怎么为 springboot程序构建一个docker镜像。docker 是一个开源的应用容器引擎,基于 Go 语言 并遵从Apache2.0协议开源。Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级、可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化。容器是完全使用沙箱机制,相互之间不会有任何接口(类似 iPhone 的 app),更重要的是容器性能开销极低。

准备工作

环境:

  • linux环境或mac,不要用windows
  • jdk 8
  • maven 3.0
  • docker

对docker一无所知的看docker教程。

创建一个springboot工程

引入web的起步依赖,创建一个 Controler:

1
2
3
4
5
6
7
8
9
10
11
12
@SpringBootApplication
@RestController
public class SpringbootWithDockerApplication {
@RequestMapping ( "/" )
public String home() {
return "Hello Docker World" ;
}
public static void main(String[] args) {
SpringApplication.run(SpringbootWithDockerApplication. class , args);
}
}

  

将springboot工程容器化

Docker有一个简单的dockerfile文件作为指定镜像的图层。让我们先创建一个 dockerFile文件:

src/main/docker/Dockerfile:

1
2
3
4
5
6
FROM frolvlad/alpine-oraclejdk8:slim
VOLUME /tmp
ADD springboot-with-docker- 0.0 . 1 -SNAPSHOT.jar app.jar
RUN sh -c 'touch /app.jar'
ENV JAVA_OPTS= ""
ENTRYPOINT [ "sh" , "-c" , "java $JAVA_OPTS -Djava.security.egd=file:/dev/./urandom -jar /app.jar" ]

  

我们通过maven 构建docker镜像。

在maven的pom目录,加上docker镜像构建的插件

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
<properties>
<docker.image.prefix>springio</docker.image.prefix>
</properties>
<build>
<plugins>
<plugin>
<groupId>com.spotify</groupId>
<artifactId>docker-maven-plugin</artifactId>
<version> 0.4 . 11 </version>
<configuration>
<imageName>${docker.image.prefix}/${project.artifactId}</imageName>
<dockerDirectory>src/main/docker</dockerDirectory>
<resources>
<resource>
<targetPath>/</targetPath>
<directory>${project.build.directory}</directory>
<include>${project.build.finalName}.jar</include>
</resource>
</resources>
</configuration>
</plugin>
</plugins>
</build>

通过maven 命令:

第一步:mvn clean

第二步: mvn package docker:bulid ,如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
Step 2 / 6 : VOLUME /tmp
—> Running in a98be3878053
—> 8286e98b54c5
Removing intermediate container a98be3878053
Step 3 / 6 : ADD springboot-with-docker- 0.0 . 1 -SNAPSHOT.jar app.jar
—> c6ce13e50bbd
Removing intermediate container a303a3058869
Step 4 / 6 : RUN sh -c ‘touch /app.jar’
—> Running in cf231afe700e
—> 9a0ec8936c00
Removing intermediate container cf231afe700e
Step 5 / 6 : ENV JAVA_OPTS “”
—> Running in e192597fc881
—> 2cb0d73bbdb0
Removing intermediate container e192597fc881
Step 6 / 6 : ENTRYPOINT sh -c java $JAVA_OPTS -Djava.security.egd=file:/dev/./urandom -jar /app.jar
—> Running in ab85f53fcdd8
—> 60fdb5c61692
Removing intermediate container ab85f53fcdd8
Successfully built 60fdb5c61692
[INFO] Built forezp/springboot-with-docker
[INFO] ————————————————————————
[INFO] BUILD SUCCESS
[INFO] ————————————————————————
[INFO] Total time: 01 : 45 min
[INFO] Finished at: 2017 - 04 -19T05: 37 : 44 - 07 : 00
[INFO] Final Memory: 19M/48M
[INFO] ————————————————————————

  架构代码如下:

资料和源码来源地址

Spring Cloud大型企业分布式微服务云架构源码请加企鹅求求:一七九一七四三三八零

转载于:https://juejin.im/post/5c7cc3f26fb9a049d7486b29

CH341A编程器是一款广泛应用的通用编程设备,尤其在电子工程和嵌入式系统开发领域中,它被用来烧录各种类型的微控制器、存储器和其他IC芯片。这款编程器的最新版本为1.3,它的一个显著特点是增加了对25Q256等32M芯片的支持。 25Q256是一种串行EEPROM(电可擦可编程只读存储器)芯片,通常用于存储程序代码、配置数据或其他非易失性信息。32M在这里指的是存储容量,即该芯片可以存储32兆位(Mbit)的数据,换算成字节数就是4MB。这种大容量的存储器在许多嵌入式系统中都有应用,例如汽车电子、工业控制、消费电子设备等。 CH341A编程器的1.3版更新,意味着它可以与更多的芯片型号兼容,特别是针对32M容量的芯片进行了优化,提高了编程效率和稳定性。26系列芯片通常指的是Microchip公司的25系列SPI(串行外围接口)EEPROM产品线,这些芯片广泛应用于各种需要小体积、低功耗和非易失性存储的应用场景。 全功能版的CH341A编程器不仅支持25Q256,还支持其他大容量芯片,这意味着它具有广泛的兼容性,能够满足不同项目的需求。这包括但不限于微控制器、EPROM、EEPROM、闪存、逻辑门电路等多种类型芯片的编程。 使用CH341A编程器进行编程操作时,首先需要将设备通过USB连接到计算机,然后安装相应的驱动程序和编程软件。在本例中,压缩包中的"CH341A_1.30"很可能是编程软件的安装程序。安装后,用户可以通过软件界面选择需要编程的芯片类型,加载待烧录的固件或数据,然后执行编程操作。编程过程中需要注意的是,确保正确设置芯片的电压、时钟频率等参数,以防止损坏芯片。 CH341A编程器1.3版是面向电子爱好者和专业工程师的一款实用工具,其强大的兼容性和易用性使其在众多编程器中脱颖而出。对于需要处理25Q256等32M芯片的项目,或者26系列芯片的编程工作,CH341A编程器是理想的选择。通过持续的软件更新和升级,它保持了与现代电子技术同步,确保用户能方便地对各种芯片进行编程和调试。
内存分区情况的分析是嵌入式系统开发中的一个重要环节,特别是在资源有限的MCU(微控制器)环境中。标题提到的工具是一款专为分析Linux环境下的`gcc-map`文件设计的工具,这类文件在编译过程结束后生成,包含了程序在目标设备内存中的布局信息。这个工具可以帮助开发者理解程序在RAM、ROM以及FLASH等存储区域的占用情况,从而进行优化。 `gcc-map`文件通常包含以下关键信息: 1. **符号表**:列出所有定义的全局和静态变量、函数以及其他符号,包括它们的地址和大小。 2. **节区分配**:显示每个代码和数据节区在内存中的位置,比如.text(代码)、.data(已初始化数据)、.bss(未初始化数据)等。 3. **内存汇总**:总览所有节区的大小,有助于评估程序的整体内存需求。 4. **重定位信息**:显示了代码和数据如何在目标地址空间中定位。 该分析工具可能提供以下功能: 1. **可视化展示**:将内存分配以图形化方式呈现,便于直观理解。 2. **详细报告**:生成详细的分析报告,列出每个符号的大小和位置。 3. **比较功能**:对比不同编译版本或配置的`map`文件,查看内存使用的变化。 4. **统计分析**:计算各种内存区域的使用率,帮助识别潜在的优化点。 5. **自定义过滤**:允许用户根据需要筛选和关注特定的符号或节区。 虽然在MCU环境中,Keil IDE自带的工具可能更方便,因为它们通常针对特定的MCU型号进行了优化,提供更加细致的硬件相关分析。然而,对于通用的Linux系统或跨平台项目,这款基于`gcc-map`的分析工具提供了更广泛的适用性。 在实际使用过程中,开发者可以利用这款工具来: - **优化内存使用**:通过分析哪些函数或数据占用过多的内存,进行代码重构或调整链接器脚本以减小体积。 - **排查内存泄漏**:结合其他工具,比如动态内存检测工具,查找可能导致内存泄漏的部分。 - **性能调优**:了解代码执行时的内存分布,有助于提高运行效率。 - **满足资源限制**:在嵌入式系统中,确保程序能在有限的内存空间内运行。 总结来说,`gcc-amap`这样的工具对于深入理解程序的内存布局和资源消耗至关重要,它能帮助开发者做出更明智的决策,优化代码以适应不同的硬件环境。在处理`map`文件时,开发者不仅能获取到程序的内存占用情况,还能进一步挖掘出可能的优化空间,从而提升系统的整体性能和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值