题目
Given a collection of intervals, find the minimum number of intervals you need to remove to make the rest of the intervals non-overlapping.
Note:
- You may assume the interval's end point is always bigger than its start point.
- Intervals like [1,2] and [2,3] have borders "touching" but they don't overlap each other.
Example 1:
Input: [ [1,2], [2,3], [3,4], [1,3] ]
Output: 1
Explanation: [1,3] can be removed and the rest of intervals are non-overlapping.
Example 2:
Input: [ [1,2], [1,2], [1,2] ]
Output: 2
Explanation: You need to remove two [1,2] to make the rest of intervals non-overlapping.
Example 3:
Input: [ [1,2], [2,3] ]
Output: 0
Explanation: You don't need to remove any of the intervals since they're already non-overlapping.
NOTE: input types have been changed on April 15, 2019. Please reset to default code definition to get new method signature.
解法思路(一)
关于排列与组合
- 排列和组合都是从给定的序列中,选几个元素;
- 选的元素的个数不能大于序列的长度;
- 排列对选出的元素的位置有要求,比如选出 3 个元素,3 个元素的相对位置的不同,是不同的排列;
- 组合对选出的元素的位置没有要求,比如选出 3 个元素,3 个元素的相对位置的不同,是相同的排列;
- 排列的递归树中,当前层选中了一个元素,下一层元素在剩余的元素中选;
- 组合的递归树中,当前层选中了一个元素,下一层元素在上一层选中的元素之后的元素中选;
暴力解法怎么解?
- 找出一组区间的所有组合,判断每个组合是否重叠,在不重叠的组合中,找出区间最多的组合,其包含的区间的个数 m,用给出的区间序列的长度 n 减去 m 得解;
- 时间复杂度是:O(2n * n);
为什么是组合不是排列?
- 比如给定的区间序列是
[1,2], [3,4], [5,6]
,排列[1,2], [3,4]
和[3,4], [1,2]
都是去掉了区间[5,6]
后得到的排列,不同的排列在这道题的场景下没有区别,所以,这里用组合而不是排列;
如何判断一组区间是否重叠?
- 先将一组区间排序;
- 然后后面的区间的左边界是否大于等于前一个区间的右边界;
如何将一组区间排序?
- 对区间的起始点进行排序;
- 如果区间的起始点相等,用区间的终止点排序;
动态规划的状态如何定义?
- memo[i] 表示使用 intervals[0...i] 的区间能构成的最长不重叠区间序列的长度;
解法实现(一)
代码实现
- 注意看二维数组是怎么比较的,通过自定义比较器;
- 注意
memo
的语义,是能构成的最大不重叠区间的长度,不是要删除的区间的个数,相应的返回值是intervals.length - res
;
package leetcode._435;
import java.util.Arrays;
import java.util.Comparator;
public class Solution435_1 {
public int eraseOverlapIntervals(int[][] intervals) {
if (intervals.length == 0)
return 0;
Arrays.sort(intervals, new Comparator<int[]>() {
@Override
public int compare(int[] o1, int[] o2) {
if (o1[0] != o2[0]) {
return o1[0] - o2[0];
}
return o1[1] - o2[1];
}
});
// 动态规划的状态定义:
// memo[i] 表示使用 intervals[0...i] 的区间能构成的最长不重叠区间序列的长度;
int[] memo = new int[intervals.length];
Arrays.fill(memo, 1);
for (int i = 1; i < intervals.length; i++)
for (int j = 0; j < i; j++)
if (intervals[i][0] >= intervals[j][1])
memo[i] = Math.max(memo[i], 1 + memo[j]);
int res = 0;
for(int i = 0; i < memo.length; i++)
res = Math.max(res, memo[i]);
return intervals.length - res;
}
public static void main(String[] args) {
// int [][] intervals = {{1, 2}, {4, 5}, {7, 9}};
int [][] intervals = {{1, 2}};
Solution435_1 s = new Solution435_1();
int res = s.eraseOverlapIntervals(intervals);
System.out.println(res);
}
}