在文件中存储的带权无向图
8 16
4 5 .35
4 7 .37
5 7 .28
0 7 .16
1 5 .32
0 4 .38
2 3 .17
1 7 .19
0 2 .26
1 2 .36
1 3 .29
2 7 .34
6 2 .40
3 6 .52
6 0 .58
6 4 .93
LazyPrim 的实现 - O(ElogE)
- 从第一个节点开始做一个切分,将该点的所有临边都维护进横切边集合 pq 中;
- 从横切边集合
pq
中取出权最小的边 e,确保 e 两头的端点不在切分的同一边; - 将这条权最小的边 e 纳入正在生成的 MST 中;
- 将这条边中尚未被纳入 MST 的端点纳入 MST,以最新的 MST 作为一个切分,在横切边集合 pq 中继续寻找下一条纳入 MST 的边;
package _08._03;
import java.util.Vector;
// 使用Prim算法求图的最小生成树
public class LazyPrimMST<Weight extends Number & Comparable> {
private WeightedGraph<Weight> G; // 图的引用
private MinHeap<Edge<Weight>> pq; // 最小堆, 横切边的集合
private boolean[] marked; // 标记数组, 在算法运行过程中标记节点 i 是否被纳入 MST 中
private Vector<Edge<Weight>> mst; // 最小生成树所包含的所有边
private Number mstWeight; // 最小生成树的权值
// 构造函数, 使用Prim算法求图的最小生成树
public LazyPrimMST(WeightedGraph<Weight> graph){
// 算法初始化
G = graph;
pq = new MinHeap<Edge<Weight>>(G.E());
marked = new boolean[G.V()];
mst = new Vector<Edge<Weight>>();
// Lazy Prim
visit(0);
while( !pq.isEmpty() ){ // O(e)
// 使用最小堆找出已经访问的边中权值最小的边
Edge<Weight> e = pq.extractMin(); // O(log(e))
// 如果这条边的两端都已经访问过了, 则扔掉这条边
if( marked[e.v()] == marked[e.w()] )
continue;
// 否则, 这条边则应该存在在最小生成树中
mst.add( e );
// 访问和这条边连接的还没有被访问过的节点
if( !marked[e.v()] )
visit( e.v() );
else
visit( e.w() );
}
// 计算最小生成树的权值
mstWeight = mst.elementAt(0).wt();
for( int i = 1 ; i < mst.size() ; i ++ )
mstWeight = mstWeight.doubleValue() + mst.elementAt(i).wt().doubleValue();
}
// 访问节点v
private void visit(int v){
assert !marked[v];
marked[v] = true;
// 将和节点v相连接的所有未访问的边放入最小堆中
for( Edge<Weight> e : G.adj(v) ) // O(e)
if( !marked[e.other(v)] )
pq.insert(e); // O(log(e))
}
// 返回最小生成树的所有边
Vector<Edge<Weight>> mstEdges(){
return mst;
};
// 返回最小生成树的权值
Number result(){
return mstWeight;
};
}
测试 LazyPrim 算法
package _08._03;
import java.util.Vector;
public class Main {
public static void main(String[] args) {
String filename = "src/_08/_03/testG1.txt";
int V = 8;
SparseWeightedGraph<Double> g = new SparseWeightedGraph<Double>(V, false);
ReadWeightedGraph readGraph = new ReadWeightedGraph(g, filename);
// Test Lazy Prim MST
System.out.println("Test Lazy Prim MST:");
LazyPrimMST<Double> lazyPrimMST = new LazyPrimMST<Double>(g);
Vector<Edge<Double>> mst = lazyPrimMST.mstEdges();
for( int i = 0 ; i < mst.size() ; i ++ )
System.out.println(mst.elementAt(i));
System.out.println("The MST weight is: " + lazyPrimMST.result());
System.out.println();
}
}
输出:
Test Lazy Prim MST:
0-7: 0.16
7-1: 0.19
0-2: 0.26
2-3: 0.17
7-5: 0.28
5-4: 0.35
2-6: 0.4
The MST weight is: 1.81
辅助类
用于维护横切边的最小堆 - MinHeap
package _08._03;
import java.util.*;
import java.lang.*;
// 在堆的有关操作中,需要比较堆中元素的大小,所以Item需要extends Comparable
public class MinHeap<Item extends Comparable> {
protected Item[] data;
protected int count;
protected int capacity;
// 构造函数, 构造一个空堆, 可容纳capacity个元素
public MinHeap(int capacity){
data = (Item[])new Comparable[capacity+1];
count = 0;
this.capacity = capacity;
}
// 构造函数, 通过一个给定数组创建一个最小堆
// 该构造堆的过程, 时间复杂度为O(n)
public MinHeap(Item arr[]){
int n = arr.length;
data = (Item[])new Comparable[n+1];
capacity = n;
for( int i = 0 ; i < n ; i ++ )
data[i+1] = arr[i];
count = n;
for( int i = count/2 ; i >= 1 ; i -- )
shiftDown(i);
}
// 返回堆中的元素个数
public int size(){
return count;
}
// 返回一个布尔值, 表示堆中是否为空
public boolean isEmpty(){
return count == 0;
}
// 向最小堆中插入一个新的元素 item
public void insert(Item item){
assert count + 1 <= capacity;
data[count+1] = item;
count ++;
shiftUp(count);
}
// 从最小堆中取出堆顶元素, 即堆中所存储的最小数据
public Item extractMin(){
assert count > 0;
Item ret = data[1];
swap( 1 , count );
count --;
shiftDown(1);
return ret;
}
// 获取最小堆中的堆顶元素
public Item getMin(){
assert( count > 0 );
return data[1];
}
// 交换堆中索引为i和j的两个元素
private void swap(int i, int j){
Item t = data[i];
data[i] = data[j];
data[j] = t;
}
//********************
//* 最小堆核心辅助函数
//********************
private void shiftUp(int k){
while( k > 1 && data[k/2].compareTo(data[k]) > 0 ){
swap(k, k/2);
k /= 2;
}
}
private void shiftDown(int k){
while( 2*k <= count ){
int j = 2*k; // 在此轮循环中,data[k]和data[j]交换位置
if( j+1 <= count && data[j+1].compareTo(data[j]) < 0 )
j ++;
// data[j] 是 data[2*k]和data[2*k+1]中的最小值
if( data[k].compareTo(data[j]) <= 0 ) break;
swap(k, j);
k = j;
}
}
// 测试 MinHeap
public static void main(String[] args) {
MinHeap<Integer> minHeap = new MinHeap<Integer>(100);
int N = 100; // 堆中元素个数
int M = 100; // 堆中元素取值范围[0, M)
for( int i = 0 ; i < N ; i ++ )
minHeap.insert( new Integer((int)(Math.random() * M)) );
Integer[] arr = new Integer[N];
// 将minheap中的数据逐渐使用extractMin取出来
// 取出来的顺序应该是按照从小到大的顺序取出来的
for( int i = 0 ; i < N ; i ++ ){
arr[i] = minHeap.extractMin();
System.out.print(arr[i] + " ");
}
System.out.println();
// 确保arr数组是从小到大排列的
for( int i = 1 ; i < N ; i ++ )
assert arr[i-1] <= arr[i];
}
}
SparseWeightedGraph
package _08._03;
import java.util.Vector;
// 稀疏图 - 邻接表
public class SparseWeightedGraph<Weight extends Number & Comparable>
implements WeightedGraph {
private int n; // 节点数
private int m; // 边数
private boolean directed; // 是否为有向图
private Vector<Edge<Weight>>[] g; // 图的具体数据
// 构造函数
public SparseWeightedGraph( int n , boolean directed ){
assert n >= 0;
this.n = n;
this.m = 0; // 初始化没有任何边
this.directed = directed;
// g初始化为n个空的vector, 表示每一个g[i]都为空, 即没有任和边
g = (Vector<Edge<Weight>>[])new Vector[n];
for(int i = 0 ; i < n ; i ++)
g[i] = new Vector<Edge<Weight>>();
}
public int V(){ return n;} // 返回节点个数
public int E(){ return m;} // 返回边的个数
// 向图中添加一个边, 权值为weight
public void addEdge(Edge e){
assert e.v() >= 0 && e.v() < n ;
assert e.w() >= 0 && e.w() < n ;
// 注意, 由于在邻接表的情况, 查找是否有重边需要遍历整个链表
// 我们的程序允许重边的出现
g[e.v()].add(new Edge(e));
if( e.v() != e.w() && !directed )
g[e.w()].add(new Edge(e.w(), e.v(), e.wt()));
m ++;
}
// 验证图中是否有从v到w的边
public boolean hasEdge( int v , int w ){
assert v >= 0 && v < n ;
assert w >= 0 && w < n ;
for( int i = 0 ; i < g[v].size() ; i ++ )
if( g[v].elementAt(i).other(v) == w )
return true;
return false;
}
// 显示图的信息
public void show(){
for( int i = 0 ; i < n ; i ++ ){
System.out.print("vertex " + i + ":\t");
for( int j = 0 ; j < g[i].size() ; j ++ ){
Edge e = g[i].elementAt(j);
System.out.print( "( to:" + e.other(i) + ",wt:" + e.wt() + ")\t");
}
System.out.println();
}
}
// 返回图中一个顶点的所有邻边
// 由于java使用引用机制,返回一个Vector不会带来额外开销,
public Iterable<Edge<Weight>> adj(int v) {
assert v >= 0 && v < n;
return g[v];
}
}
ReadWeightedGraph
package _08._03;
import java.io.BufferedInputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.Scanner;
import java.util.Locale;
import java.util.InputMismatchException;
import java.util.NoSuchElementException;
// 通过文件读取有全图的信息
public class ReadWeightedGraph {
private Scanner scanner;
// 由于文件格式的限制,我们的文件读取类只能读取权值为Double类型的图
public ReadWeightedGraph(WeightedGraph<Double> graph, String filename){
readFile(filename);
try {
int V = scanner.nextInt();
if (V < 0)
throw new IllegalArgumentException("number of vertices in a Graph must be nonnegative");
assert V == graph.V();
int E = scanner.nextInt();
if (E < 0)
throw new IllegalArgumentException("number of edges in a Graph must be nonnegative");
for (int i = 0; i < E; i++) {
int v = scanner.nextInt();
int w = scanner.nextInt();
Double weight = scanner.nextDouble();
assert v >= 0 && v < V;
assert w >= 0 && w < V;
graph.addEdge(new Edge<Double>(v, w, weight));
}
}
catch (InputMismatchException e) {
String token = scanner.next();
throw new InputMismatchException("attempts to read an 'int' value from input stream, but the next token is \"" + token + "\"");
}
catch (NoSuchElementException e) {
throw new NoSuchElementException("attemps to read an 'int' value from input stream, but there are no more tokens available");
}
}
private void readFile(String filename){
assert filename != null;
try {
File file = new File(filename);
if (file.exists()) {
FileInputStream fis = new FileInputStream(file);
scanner = new Scanner(new BufferedInputStream(fis), "UTF-8");
scanner.useLocale(Locale.ENGLISH);
}
else
throw new IllegalArgumentException(filename + " doesn't exist.");
}
catch (IOException ioe) {
throw new IllegalArgumentException("Could not open " + filename, ioe);
}
}
}
DenseWeightedGraph
package _08._03;
import java.util.Vector;
// 稠密图 - 邻接矩阵
public class DenseWeightedGraph<Weight extends Number & Comparable>
implements WeightedGraph{
private int n; // 节点数
private int m; // 边数
private boolean directed; // 是否为有向图
private Edge<Weight>[][] g; // 图的具体数据
// 构造函数
public DenseWeightedGraph( int n , boolean directed ){
assert n >= 0;
this.n = n;
this.m = 0; // 初始化没有任何边
this.directed = directed;
// g初始化为n*n的布尔矩阵, 每一个g[i][j]均为null, 表示没有任和边
// false为boolean型变量的默认值
g = new Edge[n][n];
for(int i = 0 ; i < n ; i ++)
for(int j = 0 ; j < n ; j ++)
g[i][j] = null;
}
public int V(){ return n;} // 返回节点个数
public int E(){ return m;} // 返回边的个数
// 向图中添加一个边
public void addEdge(Edge e){
assert e.v() >= 0 && e.v() < n ;
assert e.w() >= 0 && e.w() < n ;
if( hasEdge( e.v() , e.w() ) )
return;
g[e.v()][e.w()] = new Edge(e);
if( e.v() != e.w() && !directed )
g[e.w()][e.v()] = new Edge(e.w(), e.v(), e.wt());
m ++;
}
// 验证图中是否有从v到w的边
public boolean hasEdge( int v , int w ){
assert v >= 0 && v < n ;
assert w >= 0 && w < n ;
return g[v][w] != null;
}
// 显示图的信息
public void show(){
for( int i = 0 ; i < n ; i ++ ){
for( int j = 0 ; j < n ; j ++ )
if( g[i][j] != null )
System.out.print(g[i][j].wt()+"\t");
else
System.out.print("NULL\t");
System.out.println();
}
}
// 返回图中一个顶点的所有邻边
// 由于java使用引用机制,返回一个Vector不会带来额外开销,
public Iterable<Edge<Weight>> adj(int v) {
assert v >= 0 && v < n;
Vector<Edge<Weight>> adjV = new Vector<Edge<Weight>>();
for(int i = 0 ; i < n ; i ++ )
if( g[v][i] != null )
adjV.add( g[v][i] );
return adjV;
}
}
Edge
package _08._03;
// 边
public class Edge<Weight extends Number & Comparable> implements Comparable<Edge<Weight>>{
private int a, b; // 边的两个端点
private Weight weight; // 边的权值
public Edge(int a, int b, Weight weight)
{
this.a = a;
this.b = b;
this.weight = weight;
}
public Edge(Edge<Weight> e)
{
this.a = e.a;
this.b = e.b;
this.weight = e.weight;
}
public int v(){ return a;} // 返回第一个顶点
public int w(){ return b;} // 返回第二个顶点
public Weight wt(){ return weight;} // 返回权值
// 给定一个顶点, 返回另一个顶点
public int other(int x){
assert x == a || x == b;
return x == a ? b : a;
}
// 输出边的信息
public String toString(){
return "" + a + "-" + b + ": " + weight;
}
// 边之间的比较
public int compareTo(Edge<Weight> that)
{
if( weight.compareTo(that.wt()) < 0 )
return -1;
else if ( weight.compareTo(that.wt()) > 0 )
return +1;
else
return 0;
}
}
WeightedGraph
package _08._03;
interface WeightedGraph<Weight extends Number & Comparable> {
public int V();
public int E();
public void addEdge(Edge<Weight> e);
boolean hasEdge(int v, int w);
void show();
public Iterable<Edge<Weight>> adj(int v);
}