概述
用广度优先遍历求无权图的最短路径代码实现
-
广度优先遍历的过程中会记录每个节点到标定点的距离到数组
ord
中; -
某个点到标定点的最短路劲就存储在数组 ord 中;
package _07._07;
import java.util.Vector;
import java.util.Stack;
import java.util.LinkedList;
import java.util.Queue;
public class ShortestPath {
private Graph G; // 图的引用
private int s; // 起始点
private boolean[] visited; // 记录dfs的过程中节点是否被访问
private int[] from; // 记录路径, from[i]表示查找的路径上i的上一个节点
private int[] ord; // 记录每个节点到 s 的距离
// 构造函数, 寻路算法, 寻找图graph从s点到其他点的路径
public ShortestPath(Graph graph, int s){
// 算法初始化
G = graph;
assert s >= 0 && s < G.V();
visited = new boolean[G.V()];
from = new int[G.V()];
ord = new int[G.V()];
for( int i = 0 ; i < G.V() ; i ++ ){
visited[i] = false;
from[i] = -1;
ord[i] = -1;
}
this.s = s;
// 无向图最短路径算法, 从s开始广度优先遍历整张图
Queue<Integer> q = new LinkedList<Integer>();
q.add(s);
visited[s] = true;
ord[s] = 0;
while( !q.isEmpty() ){
int v = q.remove();
for( int i : G.adj(v) )
if( !visited[i] ){
q.add(i);
visited[i] = true;
from[i] = v;
ord[i] = ord[v] + 1;
}
}
}
// 查询从s点到w点是否有路径
public boolean hasPath(int w){
assert w >= 0 && w < G.V();
return visited[w];
}
// 查询从s点到w点的路径, 存放在vec中
public Vector<Integer> path(int w){
assert hasPath(w) ;
Stack<Integer> s = new Stack<Integer>();
// 通过from数组逆向查找到从s到w的路径, 存放到栈中
int p = w;
while( p != -1 ){
s.push(p);
p = from[p];
}
// 从栈中依次取出元素, 获得顺序的从s到w的路径
Vector<Integer> res = new Vector<Integer>();
while( !s.empty() )
res.add( s.pop() );
return res;
}
// 打印出从s点到w点的路径
public void showPath(int w){
assert hasPath(w) ;
Vector<Integer> vec = path(w);
for( int i = 0 ; i < vec.size() ; i ++ ){
System.out.print(vec.elementAt(i));
if( i == vec.size() - 1 )
System.out.println();
else
System.out.print(" -> ");
}
}
// 查看从s点到w点的最短路径长度
// 若从s到w不可达,返回-1
public int length(int w){
assert w >= 0 && w < G.V();
return ord[w];
}
}
图文件
7 8
0 1
0 2
0 5
0 6
3 4
3 5
4 5
4 6
测试
package _07._07;
public class Main {
// 测试无权图最短路径算法
public static void main(String[] args) {
String filename = "testG.txt";
SparseGraph g = new SparseGraph(7, false);
ReadGraph readGraph = new ReadGraph(g, filename);
g.show();
// 比较使用深度优先遍历和广度优先遍历获得路径的不同
// 广度优先遍历获得的是无权图的最短路径
Path dfs = new Path(g,0);
System.out.print("DFS : ");
dfs.showPath(6);
ShortestPath bfs = new ShortestPath(g,0);
System.out.print("BFS : ");
bfs.showPath(6);
}
}
输出:
vertex 0: 1 2 5 6
vertex 1: 0
vertex 2: 0
vertex 3: 4 5
vertex 4: 3 5 6
vertex 5: 0 3 4
vertex 6: 0 4
DFS : 0 -> 5 -> 3 -> 4 -> 6
BFS : 0 -> 6