优化点
- 在sort(Comparable[] arr, int l, int r) 方法中,递归到底的条件变了,对于数组 arr 的长度递归到15的时候,用插入排序,因为在很小的数据量的情况下,拆入排序比归并排序快;
- 在 merge(Comparable[] arr, int l, int mid, int r) 之前,前判断一下两个有序数组“接壤”的两个元素的大小,如果 arr[mid] < arr[mid + 1],则此时整个数组不需要merge了;
import java.util.*;
// 优化的Merge Sort算法
public class MergeSort2{
// 我们的算法类不允许产生任何实例
private MergeSort2(){}
// 将arr[l...mid]和arr[mid+1...r]两部分进行归并
private static void merge(Comparable[] arr, int l, int mid, int r) {
Comparable[] aux = Arrays.copyOfRange(arr, l, r+1);
// 初始化,i指向左半部分的起始索引位置l;j指向右半部分起始索引位置mid+1
int i = l, j = mid+1;
for( int k = l ; k <= r; k ++ ){
if( i > mid ){ // 如果左半部分元素已经全部处理完毕
arr[k] = aux[j-l]; j ++;
}
else if( j > r ){ // 如果右半部分元素已经全部处理完毕
arr[k] = aux[i-l]; i ++;
}
else if( aux[i-l].compareTo(aux[j-l]) < 0 ){ // 左半部分所指元素 < 右半部分所指元素
arr[k] = aux[i-l]; i ++;
}
else{ // 左半部分所指元素 >= 右半部分所指元素
arr[k] = aux[j-l]; j ++;
}
}
}
// 递归使用归并排序,对arr[l...r]的范围进行排序
private static void sort(Comparable[] arr, int l, int r) {
// 优化2: 对于小规模数组, 使用插入排序
if( r - l <= 15 ){
InsertionSort.sort(arr, l, r);
return;
}
int mid = (l+r)/2;
sort(arr, l, mid);
sort(arr, mid + 1, r);
// 优化1: 对于arr[mid] <= arr[mid+1]的情况,不进行merge
// 对于近乎有序的数组非常有效,但是对于一般情况,有一定的性能损失
if( arr[mid].compareTo(arr[mid+1]) > 0 )
merge(arr, l, mid, r);
}
public static void sort(Comparable[] arr){
int n = arr.length;
sort(arr, 0, n-1);
}
// 测试MergeSort2
public static void main(String[] args) {
// Merge Sort是我们学习的第一个O(nlogn)复杂度的算法
// 可以在1秒之内轻松处理100万数量级的数据
// 注意:不要轻易尝试使用SelectionSort, InsertionSort或者BubbleSort处理100万级的数据
// 否则,你就见识了O(n^2)的算法和O(nlogn)算法的本质差异:)
int N = 1000000;
Integer[] arr = SortTestHelper.generateRandomArray(N, 0, 100000);
SortTestHelper.testSort("bobo.algo.MergeSort2", arr);
return;
}
}