metaball公式_Metaball变形球效果实现

本文详细介绍了如何使用Metaball公式实现两个圆的外公切线计算,通过调整切点位置以实现更美观的变形球效果。文章通过实例展示了计算控制点和绘制曲线的过程,并解决了圆重叠及远离时的视觉问题。源代码示例展示了整个实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

效果图

Metaball

一 .求出圆的外公切线

image.png

两个圆心之间的距离,也就是两点之间的距离

const distanceBetweenCenter = Math.sqrt(Math.pow(c1.cx - c2.cx, 2) + Math.pow(c1.cy - c2.cy, 2));

计算直线C1C2与水平线的角度

const angleBetweenCenters = Math.atan2(c2.cy - c1.cy, c2.cx - c1.cx);

角P2C1C2可以根据公式求出

const spread = Math.acos((c1.radius - c2.radius) / distanceBetweenCenter);

那么就可以算出四个点的角度,注意,按照上面的图,angleBetweenCenters计算出来的是负数,spread是正数,

所以angle1就是p1点的角度,angle2就是p2点的角度,以此类推。

const angle1 = angleBetweenCenters + spread;

const angle2 = angleBetweenCenters - spread;

const angle3 = angleBetweenCenters + spread;

const angle4 = angleBetweenCenters - spread;

根据圆的半径与坐标,就可以求出切点坐标

const p1 = getVector(c1.cx, c1.cy, angle1, c1.radius);

const p2 = getVector(c1.cx, c1.cy, angle2, c1.radius);

const p3 = getVector(c2.cx, c2.cy, angle3, c2.radius);

const p4 = getVector(c2.cx, c2.cy, angle4, c2.radius);

function getVector(cx, cy, a, r) {

return {x: cx + r * Math.cos(a), y: cy + r * Math.sin(a)};

}

二.偏移切点位置

如果在这样的切点做变形球效果,肯定不好看,我们给出一个系数v=0.5,让切点稍微一点偏移,也就是向两圆直接偏移,注意,下面的代码和上面的角度计算不一样,不如 角P4C2C1 =Math.PI - spread,这个角度乘上v,是不是变得更小了,然后Math.PI - 角P4C2C1 也就变得更大了,这样P4就会向圆C1偏移了。

const angle1 = angleBetweenCenters + spread * v;

const angle2 = angleBetweenCenters - spread * v;

const angle3 = angleBetweenCenters + Math.PI - (Math.PI - spread) * v;

const angle4 = angleBetweenCenters - (Math.PI -(Math.PI - spread) * v);

image.png

计算控制点

这里需要用贝塞尔曲线了,而且还是三阶的,这就需要二个控制点

image.png

先计算两个圆圆心的距离totalRadius,想要随着圆的位置变化,控制点也需要变,给出d2比例参数

这里的HALF_PI是因为切点方向。

const d2 = (dist(p1.x, p1.y, p3.x, p3.y) / totalRadius);

const r1 = c1.radius * d2;

const r2 = c2.radius * d2;

const h1 = this.getVector(p1.x, p1.y, angle1 - HALF_PI, r1);

const h2 = this.getVector(p2.x, p2.y, angle2 + HALF_PI, r1);

const h3 = this.getVector(p3.x, p3.y, angle3 + HALF_PI, r2);

const h4 = this.getVector(p4.x, p4.y, angle4 - HALF_PI, r2);

三.画曲线

现在我们有切点有控制点,可以画曲线了,

ctx.beginPath();

ctx.strokeStyle = c2.color;

ctx.moveTo(p1.x, p1.y);

ctx.arc(c1.cx, c1.cy, c1.radius, angle1, angle2, false);

ctx.bezierCurveTo(h2.x, h2.y, h4.x, h4.y, p4.x, p4.y);

ctx.arc(c2.cx, c2.cy, c2.radius, angle4, angle3, false);

ctx.bezierCurveTo(h3.x, h3.y, h1.x, h1.y, p1.x, p1.y);

ctx.stroke();

image.png

但是现在要是将两个圆拉远了,就会出现下面的问题,这个问题后面会解决

image.png

四.圆的重叠

我们先来解决下面这个问题

image.gif

当两个圆重叠时,随着圆重叠程度的增加,u1与u2的角度也会变得越来越大,如果这个时候,u1与u2参与

切点角度的运算,那么此时切点角度的变化就不会有那么大。

4169630-610cd26f3d437a00.png

let u1 = 0;

let u2 = 0;

if (distanceBetweenCenter < totalRadius) {

//余弦定理

u1 = Math.acos((c1.radius * c1.radius + distanceBetweenCenter * distanceBetweenCenter - c2.radius * c2.radius) / (2 * c1.radius * distanceBetweenCenter));

u2 = Math.acos((c2.radius * c2.radius + distanceBetweenCenter * distanceBetweenCenter - c1.radius * c1.radius) / (2 * c2.radius * distanceBetweenCenter));

} else {

u1 = 0;

u2 = 0;

}

const angleBetweenCenters = Math.atan2(c2.cy - c1.cy, c2.cx - c1.cx);

const spread = Math.acos((c1.radius - c2.radius) / distanceBetweenCenter);

const angle1 = angleBetweenCenters + u1 + (spread - u1) * v;

const angle2 = angleBetweenCenters - (u1 + (spread - u1) * v);

const angle3 = angleBetweenCenters + Math.PI - u2 - (Math.PI - u2 - spread) * v;

const angle4 = angleBetweenCenters - (Math.PI - u2 - (Math.PI - u2 - spread) * v);

4169630-8aa8612a555756aa.gif

最后来解决两个圆拉的太远的问题,只要超过某个距离,就可以不需要画了。

const maxDist = c1.radius + c2.radius * 3.9;

const distanceBetweenCenter = Math.sqrt(Math.pow(c1.cx - c2.cx, 2) + Math.pow(c1.cy - c2.cy, 2));

if (distanceBetweenCenter >= maxDist || distanceBetweenCenter <= Math.abs(c1.radius - c2.radius)) {

return;

}

最后,贴出源码:

Title

body, html {

width: 100%;

height: 100%;

}

const devicePixelRatio = window.devicePixelRatio || 1;

let canvas = document.getElementById("meta-ball");

canvas.width = document.body.clientWidth * devicePixelRatio;

canvas.height = document.body.clientHeight * devicePixelRatio;

let ctx = canvas.getContext("2d");

const HALF_PI = Math.PI / 2;

class Circle {

constructor(cx, cy, radius, color) {

this.cx = cx;

this.cy = cy;

this.radius = radius;

this.color = color;

this.dragging = false;

}

draw(ctx) {

// ctx.fillStyle = this.color;

// ctx.beginPath();

// ctx.arc(this.cx, this.cy, this.radius, 0, 2 * Math.PI);

// ctx.fill();

ctx.strokeStyle = this.color;

ctx.lineWidth = 2 * devicePixelRatio;

ctx.beginPath();

ctx.arc(this.cx, this.cy, this.radius, 0, 2 * Math.PI);

ctx.stroke();

ctx.fillStyle = this.color;

ctx.beginPath();

ctx.arc(this.cx, this.cy, 4 * devicePixelRatio, 0, 2 * Math.PI);

ctx.fill();

}

move(x, y) {

if (this.dragging) {

this.cx = x;

this.cy = y;

}

}

}

const c1 = new Circle(canvas.width * 0.4, canvas.height * 0.4, Math.min(canvas.width, canvas.height) * 0.2, '#432322');

const c2 = new Circle(canvas.width * 0.7, canvas.height * 0.5, Math.min(canvas.width, canvas.height) * 0.1, '#432322');

let isDrawing = false;

canvas.addEventListener('mousedown', e => {

isDrawing = true;

let x = e.offsetX * devicePixelRatio;

let y = e.offsetY * devicePixelRatio;

if (Math.sqrt(Math.pow(x - c1.cx, 2) + Math.pow(y - c1.cy, 2)) <= c1.radius) {

c1.dragging = true;

c2.dragging = false;

}

if (Math.sqrt(Math.pow(x - c2.cx, 2) + Math.pow(y - c2.cy, 2)) <= c2.radius) {

c1.dragging = false;

c2.dragging = true;

}

});

canvas.addEventListener('mousemove', e => {

let x = e.offsetX * devicePixelRatio;

let y = e.offsetY * devicePixelRatio;

if (!isDrawing) {

return

}

update(x, y);

});

canvas.addEventListener('mouseup', e => {

isDrawing = false;

c1.dragging = false;

c2.dragging = false;

});

function update(x, y) {

ctx.clearRect(0, 0, canvas.width, canvas.height);

c1.move(x, y);

c2.move(x, y);

c1.draw(ctx);

c2.draw(ctx);

const maxDist = c1.radius + c2.radius * 3.9;

const distanceBetweenCenter = Math.sqrt(Math.pow(c1.cx - c2.cx, 2) + Math.pow(c1.cy - c2.cy, 2));

if (distanceBetweenCenter >= maxDist || distanceBetweenCenter <= Math.abs(c1.radius - c2.radius)) {

return;

}

const totalRadius = c1.radius + c2.radius;

const v = 0.5;

let u1 = 0;

let u2 = 0;

if (distanceBetweenCenter < totalRadius) {

//余弦定理

u1 = Math.acos((c1.radius * c1.radius + distanceBetweenCenter * distanceBetweenCenter - c2.radius * c2.radius) / (2 * c1.radius * distanceBetweenCenter));

u2 = Math.acos((c2.radius * c2.radius + distanceBetweenCenter * distanceBetweenCenter - c1.radius * c1.radius) / (2 * c2.radius * distanceBetweenCenter));

} else {

u1 = 0;

u2 = 0;

}

const angleBetweenCenters = Math.atan2(c2.cy - c1.cy, c2.cx - c1.cx);

const spread = Math.acos((c1.radius - c2.radius) / distanceBetweenCenter);

const angle1 = angleBetweenCenters + u1 + (spread - u1) * v;

const angle2 = angleBetweenCenters - (u1 + (spread - u1) * v);

const angle3 = angleBetweenCenters + Math.PI - u2 - (Math.PI - u2 - spread) * v;

const angle4 = angleBetweenCenters - (Math.PI - u2 - (Math.PI - u2 - spread) * v);

const p1 = getVector(c1.cx, c1.cy, angle1, c1.radius);

const p2 = getVector(c1.cx, c1.cy, angle2, c1.radius);

const p3 = getVector(c2.cx, c2.cy, angle3, c2.radius);

const p4 = getVector(c2.cx, c2.cy, angle4, c2.radius);

// drawLine(c1.cx, c1.cy, p1.x, p1.y, c1.color);

// drawLine(c1.cx, c1.cy, p2.x, p2.y, c1.color);

// drawLine(c2.cx, c2.cy, p3.x, p3.y, c2.color);

// drawLine(c2.cx, c2.cy, p4.x, p4.y, c2.color);

// drawLine(c2.cx, c2.cy, c1.cx, c1.cy, c2.color);

// drawLine(p1.x, p1.y, p3.x, p3.y, "#761242");

// drawLine(p2.x, p2.y, p4.x, p4.y, "#761242");

// drawCircle(p1.x, p1.y, 4 * devicePixelRatio, '#f00');

// drawCircle(p2.x, p2.y, 4 * devicePixelRatio, '#f00');

// drawCircle(p3.x, p3.y, 4 * devicePixelRatio, '#f00');

// drawCircle(p4.x, p4.y, 4 * devicePixelRatio, '#f00');

// drawLine(p1.x, p1.y, p3.x, p3.y, '#979798');

// drawLine(p2.x, p2.y, p4.x, p4.y, '#979798');

// drawText("p1", p1.x, p1.y, '#f00');

// drawText("p2", p2.x, p2.y, '#f00');

// drawText("p3", p3.x, p3.y, '#f00');

// drawText("p4", p4.x, p4.y, '#f00');

// drawText("c1", c1.cx, c1.cy, c1.color);

// drawText("c2", c2.cx, c2.cy, c2.color);

const d2 = (dist(p1.x, p1.y, p3.x, p3.y) / totalRadius);

const r1 = c1.radius * d2;

const r2 = c2.radius * d2;

const h1 = this.getVector(p1.x, p1.y, angle1 - HALF_PI, r1);

const h2 = this.getVector(p2.x, p2.y, angle2 + HALF_PI, r1);

const h3 = this.getVector(p3.x, p3.y, angle3 + HALF_PI, r2);

const h4 = this.getVector(p4.x, p4.y, angle4 - HALF_PI, r2);

// ctx.beginPath();

// ctx.fillStyle = c2.color;

// ctx.moveTo(p1.x, p1.y);

// ctx.arc(c1.cx, c1.cy, c1.radius, angle1, angle2, false);

// ctx.bezierCurveTo(h2.x, h2.y, h4.x, h4.y, p4.x, p4.y);

// ctx.arc(c2.cx, c2.cy, c2.radius, angle4, angle3, false);

// ctx.bezierCurveTo(h3.x, h3.y, h1.x, h1.y, p1.x, p1.y);

// ctx.fill();

ctx.beginPath();

ctx.strokeStyle = c2.color;

ctx.moveTo(p1.x, p1.y);

ctx.arc(c1.cx, c1.cy, c1.radius, angle1, angle2, false);

ctx.bezierCurveTo(h2.x, h2.y, h4.x, h4.y, p4.x, p4.y);

ctx.arc(c2.cx, c2.cy, c2.radius, angle4, angle3, false);

ctx.bezierCurveTo(h3.x, h3.y, h1.x, h1.y, p1.x, p1.y);

ctx.stroke();

// drawLine(p1.x, p1.y, h1.x, h1.y, "#7ee987");

// drawLine(p2.x, p2.y, h2.x, h2.y, "#7ee987");

// drawLine(p3.x, p3.y, h3.x, h3.y, "#7ee987");

// drawLine(p4.x, p4.y, h4.x, h4.y, "#7ee987");

// //

// drawCircle(h1.x, h1.y, 4 * devicePixelRatio, '#a24444');

// drawCircle(h2.x, h2.y, 4 * devicePixelRatio, '#a24444');

// drawCircle(h3.x, h3.y, 4 * devicePixelRatio, '#a24444');

// drawCircle(h4.x, h4.y, 4 * devicePixelRatio, '#a24444');

// drawText("h1", h1.x, h1.y);

// drawText("h2", h2.x, h2.y);

// drawText("h3", h3.x, h3.y);

// drawText("h4", h4.x, h4.y);

}

function getVector(cx, cy, a, r) {

return {x: cx + r * Math.cos(a), y: cy + r * Math.sin(a)};

}

function dist(x1, y1, x2, y2) {

return Math.sqrt(Math.pow(x1 - x2, 2) + Math.pow(y1 - y2, 2));

}

function drawLine(x1, y1, x2, y2, color) {

ctx.strokeStyle = color;

ctx.beginPath();

ctx.moveTo(x1, y1);

ctx.lineTo(x2, y2);

ctx.stroke()

}

function drawCircle(x, y, r, color) {

ctx.fillStyle = color;

ctx.beginPath();

ctx.arc(x, y, r, 0, 2 * Math.PI);

ctx.fill()

}

function drawText(text, x, y, color) {

ctx.beginPath();

ctx.fillStyle = color;

ctx.font = 30 * devicePixelRatio + 'px Arial';

ctx.fillText(text, x, y);

ctx.fill()

}

update(0, 0);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值