题目
线段交点leetcode-cn.com给定两条线段(表示为起点start = {X1, Y1}和终点end = {X2, Y2}),如果它们有交点,请计算其交点,没有交点则返回空值。
要求浮点型误差不超过10^-6。若有多个交点(线段重叠)则返回 X 值最小的点,X 坐标相同则返回 Y 值最小的点。
示例 1:
输入:
line1 = {0, 0}, {1, 0}
line2 = {1, 1}, {0, -1}
输出: {0.5, 0}
示例 2:
输入:
line1 = {0, 0}, {3, 3}
line2 = {1, 1}, {2, 2}
输出: {1, 1}
示例 3:
输入:
line1 = {0, 0}, {1, 1}
line2 = {1, 0}, {2, 1}
输出: {},两条线段没有交点
提示:
坐标绝对值不会超过 2^7
输入的坐标均是有效的二维坐标
解析
- 根据斜率判断(y2-y1)/(x2-x1) = (y4-y3)/(x4-x3)
- //判断是否在一条直线上:数学斜率计算 (y3-y1)/(x3-x1) = (y2-y1)/(x2-x1)
- 如果在一条直线上,则判断一条线段上的每个点在不在另一个线段上,判断方法如下:
- //如果x1 == x2则只需判断y,若y1 == y2 则则只需判断x
(x1 == x2||(Math.Max(x1, x2) >= x && Math.Min(x1, x2) <= x))&& (y1 == y2||(Math.Max(y1, y2) >= y && Math.Min(y1, y2) <= y))
- 不在一条直线上时,则需要借助方程的一般表达式进行计算
- //一般方程式推导:
- 线段1,相交点(x,y): x = x1+(x2-x1)*t1 y = y1+(y2-y1)*t1
- 线段2,相交点(x,y):x = x3+(x4-x3)*t2 y = y3+(y4-y3)*t2
- //一般方程式推导:

- //两个方程联立得到
x1+(x2-x1)*t1 = x3+(x4-x3)*t2 y1+(y2-y1)*t1 = y3+(y4-y3)*t2 - 求出t1和t2,判断t1和t2是否满足大于等于0且小于1的条件,若满足直接计算交点,不满足返回空
- //两个方程联立得到
代码
public class Solution {
public double[] Intersection(int[] start1, int[] end1, int[] start2, int[] end2)
{
double[] res = new Double[2] {double.MaxValue, double.MaxValue};
int x1 = start1[0], x2 = end1[0], y1 = start1[1], y2 = end1[1];
int x3 = start2[0], x4 = end2[0], y3 = start2[1], y4 = end2[1];
//数学斜率计算 △y1/△x1 = △y2/△x2
//(y2-y1)/(x2-x1) = (y4-y3)/(x4-x3)
//平行
if ((y2 - y1) * (x4 - x3) == (y4 - y3) * (x2 - x1))
{
//判断是否在一条直线上
//数学斜率计算 (y3-y1)/(x3-x1) = (y2-y1)/(x2-x1)
if ((y3 - y1) * (x2 - x1) == (y2 - y1) * (x3 - x1))
{
//判断四种点在线段上
if (IsOverLerp(x1, y1, x2, y2, x3, y3))
{
OverLerp(res, x3, y3);
}
if (IsOverLerp(x1, y1, x2, y2, x4, y4))
{
OverLerp(res, x4, y4);
}
if (IsOverLerp(x3, y3, x4, y4, x1, y1))
{
OverLerp(res, x1, y1);
}
if (IsOverLerp(x3, y3, x4, y4, x2, y2))
{
OverLerp(res, x1, y2);
}
}
}
else
{
//一般方程式推导
//线段1,相交点(x,y)
// x = x1+(x2-x1)*t1 y = y1+(y2-y1)*t1
//线段2,相交点(x,y)
// x = x3+(x4-x3)*t2 y = y3+(y4-y3)*t2
//两个方程联立得到
//x1+(x2-x1)*t1 = x3+(x4-x3)*t2 y1+(y2-y1)*t1 = y3+(y4-y3)*t2
// (x1+(x2-x1)*t1-x3)/(x4-x3) = (y1+(y2-y1)*t1 -y3)/(y4-y3)
double t1 = (double) ((x4 - x3) * (y1 - y3) - (x1 - x3) * (y4 - y3)) /
((x2 - x1) * (y4 - y3) - (x4 - x3) * (y2 - y1));
double t2 = (double) ((x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1)) /
((y2 - y1) * (x4 - x3) - (x2 - x1) * (y4 - y3));
if (t1 >= 0.0 && t1 <= 1.0 && t2 >= 0.0 && t2 <= 1.0)
{
res[0] = x1 + (x2 - x1) * t1;
res[1] = y1 + (y2 - y1) * t1;
}
}
return double.MaxValue == res[0] ? new double[0] : res;
}
/// <summary>
/// 更新重叠
/// </summary>
void OverLerp(double[] res, double x, double y)
{
if (res[0] > x || (x == res[0] && res[1] > y))
{
res[0] = x;
res[1] = y;
}
}
/// <summary>
/// 是否重叠,前提是已经在一条直线上
/// <param name="x1"></param>
/// <param name="y1"></param>
/// <param name="x2"></param>
/// <param name="y2"></param>
/// <param name="x">要判断的点x</param>
/// <param name="y">要判断的点y</param>
/// <returns></returns>
/// </summary>
bool IsOverLerp(int x1, int y1, int x2, int y2, int x, int y)
{
//如果x1 == x2或者y1 == y2 则肯定是相交的
return (x1 == x2||(Math.Max(x1, x2) >= x && Math.Min(x1, x2) <= x))&& (y1 == y2||(Math.Max(y1, y2) >= y && Math.Min(y1, y2) <= y));
}
}