二叉链表存储的思想是让每个节点都记住它的左、右两个子节点,为每个节点增加left、right两个指针,分别引用该节点的左、右两个子节点,如图所示:
其中,每个节点大致有如下定义:
class Node{
T data;
Node left;
Node right;
} 对于这种二叉链表存储的二叉树,如果程序需要,为指定节点添加子节点也非常容易,让父节点的left、right引用指向新节点即可。
Java实现代码:
package com.liuhao.DataStructures;
public class TwoLinkBinTree {
public static class TreeNode{
Object data;
TreeNode left;
TreeNode right;
public TreeNode(){}
public TreeNode(Object data){
this.data = data;
}
public TreeNode(Object data, TreeNode left, TreeNode right) {
this.data = data;
this.left = left;
this.right = right;
}
}
private TreeNode root;
//以默认的构造器创建
public TwoLinkBinTree(){
this.root = new TreeNode();
}
//以指定根元素创建
public TwoLinkBinTree(E data){
this.root = new TreeNode(data);
}
/**
* 为指定节点添加子节点
* @param parent 需要添加节点的父节点的索引
* @param data 新添加子节点的数据
* @param isLeft 是否是添加左子节点
* @return 新增的节点
*/
public TreeNode addNode(TreeNode parent, E data, boolean isLeft){
if(parent == null){
throw new RuntimeException(parent + "节点为空,不能添加子节点!");
}
if(isLeft && parent.left != null){
throw new RuntimeException(parent + "节点已有左子节点,不能添加左子节点!");
}
if(!isLeft && parent.right != null){
throw new RuntimeException(parent + "节点已有右子节点,不能添加右子节点!");
}
TreeNode newNode = new TreeNode(data);
if(isLeft){
parent.left = newNode;
}else{
parent.right = newNode;
}
return newNode;
}
//判断二叉树是否为空
public boolean isEmpty(){
return root.data == null;
}
//获取根节点
public TreeNode getRoot(){
if(isEmpty()){
throw new RuntimeException("树为空,无法获取根节点!");
}
return root;
}
//获取指定节点的左子节点
public TreeNode getLeft(TreeNode parent){
if(parent == null){
throw new RuntimeException(parent + "节点为空,不能获取子节点!");
}
return parent.left == null ? null : parent.left;
}
//获取指定节点的右子节点
public TreeNode getRight(TreeNode parent){
if(parent == null){
throw new RuntimeException(parent + "节点为空,不能获取子节点!");
}
return parent.right == null ? null : parent.right;
}
//获取指定节点的深度
private int getDeep(TreeNode node){
if(node == null){
return 0;
}
if(node.left == null && node.right == null){
return 1;
}else{
int leftDeep = getDeep(node.left);
int rightDeep = getDeep(node.right);
int max = leftDeep > rightDeep ? leftDeep : rightDeep;
return max + 1;
}
}
public int getTreeDeep(){
return this.getDeep(root);
}
}测试代码:
package com.liuhao.DataStructures;
import org.junit.Test;
public class TwoLinkBinTreeTest {
@Test
public void test() {
TwoLinkBinTree binTree = new TwoLinkBinTree("根");
TwoLinkBinTree.TreeNode node1 = binTree.addNode(binTree.getRoot(), "根左", true);
TwoLinkBinTree.TreeNode node2 = binTree.addNode(binTree.getRoot(), "根右", false);
TwoLinkBinTree.TreeNode node3 = binTree.addNode(node2, "根右左", true);
TwoLinkBinTree.TreeNode node4 = binTree.addNode(node2, "根右右", false);
TwoLinkBinTree.TreeNode node5 = binTree.addNode(node4, "根右右左", true);
TwoLinkBinTree.TreeNode node6 = binTree.addNode(node3, "根右左右", false);
TwoLinkBinTree.TreeNode node7 = binTree.addNode(node6, "根右左右右", false);
System.out.println("node2的左子节点:" + binTree.getLeft(node2).data);
System.out.println("node2的右子节点:" + binTree.getRight(node2).data);
System.out.println("树的深度:" + binTree.getTreeDeep());
}
}对于这种二叉链表的二叉树,因为采用链表来记录树中所有节点,所以添加节点没有限制,而且不会希像顺序存储那样产生大量的空间浪费。当然,这种二叉链表的存储方式在遍历树节点时效率不高,指定节点访问其父节点时也是如此,程序必须采用遍历二叉树的方式来搜寻其父节点。
原文:http://blog.youkuaiyun.com/bruce_6/article/details/38229639