《机器学习系列教程》神经网络的入门级算法

第四章 经典网络

4.1 LetNet5

一种典型的用来识别数字的卷积网络是LeNet-5。

4.1.1 模型结构

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-QiOLzT7k-1578728255977)(./img/ch4/image1.png)]

4.1.2 模型结构

LeNet-5共有7层,不包含输入,每层都包含可训练参数;每个层有多个Feature Map,每个FeatureMap通过一种卷积滤波器提取输入的一种特征,然后每个FeatureMap有多个神经元。

  1. C1层是一个卷积层
    输入图片:32 * 32
    卷积核大小:5 * 5
    卷积核种类:6
    输出featuremap大小:28 * 28 (32-5+1)
    神经元数量:28 * 28 * 6
    可训练参数:(5 * 5+1) * 6(每个滤波器5 * 5=25个unit参数和一个bias参数,一共6个滤波器)
    连接数:(5 * 5+1) * 6 * 28 * 28

    <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI拉呱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值