poj2955括号匹配 区间DP

本文探讨了如何在一组括号中找到最长的合法括号序列,并提供了区间动态规划的解决方案。
Brackets
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 5424 Accepted: 2909

Description

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …, im where 1 ≤ i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end

Sample Output

6
6
4
0
6
 
题意:有一串括号,() 或者 [ ]这样算作匹配,如果s1匹配了,那么(s1) [s1]也算匹配,其他都是不合法的。
输入一串括号,问你匹配的长度是多少。
 
思路:
区间dp。dp[i]j]表示以i开始的长度为j的匹配的个数。转移的时候还需要考虑 j 到 j+i 之间的这一段,设其最大值x,
如果s[j] == s[j+i] ,x += 1.然后就是状态转移的方程 dp[j][i] = max(x,dp[j][k] + dp[k+j][i-k] | k表示<=i的长度);
因为只进行状态转移的话,无法考虑匹配的情况,所以我先处理匹配时候的值。
 
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<string>
#include<time.h>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define INF 1000000001
#define ll long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
const int MAXN = 110;
int dp[MAXN][MAXN];
char s[MAXN];
int ok(char k1,char k2)
{
    if(k1 == '(' && k2 == ')')
        return 1;
    if(k1 == '[' && k2 == ']')
        return 1;
    return 0;
}
int main()
{
    while(~scanf("%s",s+1)){
        if(s[1] == 'e')break;
        int len = strlen(s+1);
        int ans = 0;
        memset(dp,0,sizeof(dp));
        for(int i = 2; i <= len; i++){
            for(int j = 1; j <= len - i + 1; j++){
                if(i == 2 && ok(s[j],s[j+i-1])){
                    dp[j][i] = 1;
                }
                else if(i > 2){
                    int p = 0;
                    for(int k = 0; k <= i - 2; k++){
                        p = max(p,dp[j+1][k]+dp[j+k+1][i-k-2]);
                        //cout<<i<<endl;
                        //cout<<dp[j+1][k]<<' '<<j+1<<' '<<k<<' '<<endl;
                        //cout<<dp[j+k+1][i-k-1]<<' '<<j+k+1<<' '<<i-k-1<<' '<<endl;
                    }
                    if(ok(s[j],s[j+i-1])){
                        p++;
                    }
                    dp[j][i] = max(p,dp[j][i]);
                    for(int k = 0; k <= i; k++){
                        dp[j][i] = max(dp[j][i],dp[j][k]+dp[j+k][i-k]);
                    }
                }
            }
        }
        printf("%d\n",dp[1][len] * 2);
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/sweat123/p/5482470.html

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值