codeforces721C

本文介绍了解决CodeForces-721C问题的方法,该问题涉及在一个没有环路的有向图中找到从起点到终点的路径,使访问尽可能多的景点且不超过给定时间限制。通过使用DAG上的动态规划,文章详细解释了如何确定最大可访问景点数量及其路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Journey

 CodeForces - 721C 

Recently Irina arrived to one of the most famous cities of Berland — the Berlatov city. There are n showplaces in the city, numbered from 1 to n, and some of them are connected by one-directional roads. The roads in Berlatov are designed in a way such that there are no cyclic routes between showplaces.

Initially Irina stands at the showplace 1, and the endpoint of her journey is the showplace n. Naturally, Irina wants to visit as much showplaces as she can during her journey. However, Irina's stay in Berlatov is limited and she can't be there for more than T time units.

Help Irina determine how many showplaces she may visit during her journey from showplace 1 to showplace n within a time not exceeding T. It is guaranteed that there is at least one route from showplace 1 to showplace n such that Irina will spend no more than T time units passing it.

Input

The first line of the input contains three integers n, m and T (2 ≤ n ≤ 5000,  1 ≤ m ≤ 5000,  1 ≤ T ≤ 109) — the number of showplaces, the number of roads between them and the time of Irina's stay in Berlatov respectively.

The next m lines describes roads in Berlatov. i-th of them contains 3 integers ui, vi, ti (1 ≤ ui, vi ≤ n, ui ≠ vi, 1 ≤ ti ≤ 109), meaning that there is a road starting from showplace ui and leading to showplace vi, and Irina spends ti time units to pass it. It is guaranteed that the roads do not form cyclic routes.

It is guaranteed, that there is at most one road between each pair of showplaces.

Output

Print the single integer k (2 ≤ k ≤ n) — the maximum number of showplaces that Irina can visit during her journey from showplace 1 to showplace n within time not exceeding T, in the first line.

Print k distinct integers in the second line — indices of showplaces that Irina will visit on her route, in the order of encountering them.

If there are multiple answers, print any of them.

Examples

Input
4 3 13
1 2 5
2 3 7
2 4 8
Output
3
1 2 4
Input
6 6 7
1 2 2
1 3 3
3 6 3
2 4 2
4 6 2
6 5 1
Output
4
1 2 4 6
Input
5 5 6
1 3 3
3 5 3
1 2 2
2 4 3
4 5 2
Output
3
1 3 5

sol:十分裸的在DAG上dp,dp[i][j]表示到i节点,经过了j个点的最小距离。明明可以好好拓扑的,然后第一次脑抽了以为dfs就可以了,T了一发之后发现那是nm2的,好好tuopu即可AC
#include <bits/stdc++.h>
using namespace std;
typedef int ll;
inline ll read()
{
    ll s=0;
    bool f=0;
    char ch=' ';
    while(!isdigit(ch))
    {
        f|=(ch=='-'); ch=getchar();
    }
    while(isdigit(ch))
    {
        s=(s<<3)+(s<<1)+(ch^48); ch=getchar();
    }
    return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
    if(x<0)
    {
        putchar('-'); x=-x;
    }
    if(x<10)
    {
        putchar(x+'0'); return;
    }
    write(x/10);
    putchar((x%10)+'0');
    return;
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const int N=5005;
int n,m,T;
namespace Pic
{
    int tot=0,Next[N],to[N],val[N],head[N],Indeg[N];
    inline void add(int x,int y,int z)
    {
        Indeg[y]++;
        Next[++tot]=head[x];
        to[tot]=y;
        val[tot]=z;
        head[x]=tot;
    }
    int dp[N][N],Path[N][N];
    inline void OutPut(int x,int Num)
    {
        if(Num==1)
        {
            W(x); return;
        }
        OutPut(Path[x][Num],Num-1);
        W(x);
    }
    queue<int>Queue;
    inline void Solve()
    {
        int i,j;
        memset(dp,63,sizeof dp);
        dp[1][1]=0;
        Queue.push(1);
        for(i=2;i<=n;i++) if(Indeg[i]==0)
        {
            for(j=head[i];j;j=Next[j]) Indeg[to[j]]--;
        }
        while(!Queue.empty())
        {
            int x=Queue.front(); Queue.pop();
            for(i=head[x];i;i=Next[i])
            {
                if(!(--Indeg[to[i]])) Queue.push(to[i]);
                for(j=1;j<n;j++) if(dp[to[i]][j+1]>dp[x][j]+val[i])
                {
                    dp[to[i]][j+1]=dp[x][j]+val[i];
                    Path[to[i]][j+1]=x;
                }
            }
        }
        for(i=n;i>=1;i--) if(dp[n][i]<=T)
        {
            Wl(i); OutPut(n,i); break;
        }
    }
}
int main()
{
    int i;
    R(n); R(m); R(T);
    for(i=1;i<=m;i++)
    {
        int x,y,z;
        R(x); R(y); R(z);
        Pic::add(x,y,z);
    }
    Pic::Solve();
    return 0;
}
/*
Input
4 3 13
1 2 5
2 3 7
2 4 8
Output
3
1 2 4 

Input
6 6 7
1 2 2
1 3 3
3 6 3
2 4 2
4 6 2
6 5 1
Output
4
1 2 4 6 

Input
5 5 6
1 3 3
3 5 3
1 2 2
2 4 3
4 5 2
Output
3
1 3 5

input
4 4 10
2 1 1
2 3 1
1 3 1
3 4 1
output
3
1 3 4
*/
View Code

 

转载于:https://www.cnblogs.com/gaojunonly1/p/10746928.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值