【刷题】LOJ 6013 「网络流 24 题」负载平衡

本文介绍了一种解决仓库环形排列下货物平衡问题的方法,通过构建特定的图模型并运用MCMF算法来计算最少搬运量,确保所有仓库的货物数量相等。

题目描述

G 公司有 \(n\) 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等。如何用最少搬运量可以使 \(n\) 个仓库的库存数量相同。搬运货物时,只能在相邻的仓库之间搬运。

输入格式

文件的第 \(1\) 行中有 \(1\) 个正整数 \(n\) ,表示有 \(n\) 个仓库。

\(2\) 行中有 \(n\) 个正整数,表示 \(n\) 个仓库的库存量。

输出格式

输出最少搬运量。

样例

样例输入

5
17 9 14 16 4

样例输出

11

数据范围与提示

\(1 \leq n \leq 100\)

题解

先求出最终状态每个仓库有多少货物

看每个仓库是多了还是少了

如果多了,那么源点向它连边,容量为多出的量,费用为 \(0\)

如果少了,那么它向汇点连边,容量为缺少的量,费用为 \(0\)

相邻的两个点连容量为 \(inf\) 的边,费用为 \(1\) ,代表相邻两点可以移动,但每次移动算作一次费用

但要防止源点流向仓库,直接流向汇点,所以要拆点

每个点拆成两个点,之间不能连边,连边方式就是上面所述,但是与源点连的和与汇点连的不能是同一列点

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=100+10,inf=0x3f3f3f3f;
int n,a[MAXN],all,stan,e=1,s,t,beg[MAXN<<1],cur[MAXN<<1],clk,vis[MAXN<<1],nex[MAXN<<4],to[MAXN<<4],cap[MAXN<<4],was[MAXN<<4],answas,p[MAXN<<1],level[MAXN<<1];
std::queue<int> q;
template<typename T> inline void read(T &x)
{
    T data=0,w=1;
    char ch=0;
    while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
    if(ch=='-')w=-1,ch=getchar();
    while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
    x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
    if(x<0)putchar('-'),x=-x;
    if(x>9)write(x/10);
    putchar(x%10+'0');
    if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y,int z,int k)
{
    to[++e]=y;
    nex[e]=beg[x];
    beg[x]=e;
    cap[e]=z;
    was[e]=k;
    to[++e]=x;
    nex[e]=beg[y];
    beg[y]=e;
    cap[e]=0;
    was[e]=-k;
}
inline bool bfs()
{
    for(register int i=1;i<=t;++i)level[i]=inf;
    level[s]=0;
    p[s]=1;
    q.push(s);
    while(!q.empty())
    {
        int x=q.front();
        q.pop();
        p[x]=0;
        for(register int i=beg[x];i;i=nex[i])
            if(cap[i]&&level[to[i]]>level[x]+was[i])
            {
                level[to[i]]=level[x]+was[i];
                if(!p[to[i]])p[to[i]]=1,q.push(to[i]);
            }
    }
    return level[t]!=inf;
}
inline int dfs(int x,int maxflow)
{
    if(x==t||!maxflow)return maxflow;
    int res=0;
    vis[x]=clk;
    for(register int &i=cur[x];i;i=nex[i])
        if((vis[x]^vis[to[i]])&&cap[i]&&level[to[i]]==level[x]+was[i])
        {
            int f=dfs(to[i],min(maxflow,cap[i]));
            res+=f;
            cap[i]-=f;
            cap[i^1]+=f;
            answas+=was[i]*f;
            maxflow-=f;
            if(!maxflow)break;
        }
    vis[x]=0;
    return res;
}
inline void MCMF()
{
    while(bfs())clk++,memcpy(cur,beg,sizeof(cur)),dfs(s,inf);
}
int main()
{
    read(n);
    for(register int i=1;i<=n;++i)read(a[i]),all+=a[i];
    stan=all/n;
    s=(n<<1)+1,t=s+1;
    for(register int i=1;i<=n;++i)
    {
        if(a[i]-stan>0)insert(s,i,a[i]-stan,0);
        else insert(i+n,t,stan-a[i],0);
        int pre=i-1?i-1:n,nxt=i%n+1;
        insert(i,pre,inf,1);insert(i,nxt,inf,1);
        insert(i,pre+n,inf,1);insert(i,nxt+n,inf,1);
    }
    MCMF();
    write(answas,'\n');
    return 0;
}

转载于:https://www.cnblogs.com/hongyj/p/9433526.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值