【剑指offer】连续子数组的最大和

本文探讨了一维模式识别中的经典问题——如何计算连续子向量的最大和。即使数组中包含负数,也能找到使总和最大的连续子序列。文章详细介绍了解决问题的思路,并提供了一个具体示例。

一、题目:

     HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。给一个数组,返回它的最大连续子序列的和,你会不会被他忽悠住?(子向量的长度至少是1).

  翻译:求最大连续子序列和,数组可能有负数。

二、思路:

  对于一个数A,若是A的左边累计数非负,那么加上A能使得值不小于A,认为累计值对整体和是有贡献的。如果前几项累计值负数,则认为有害于总和,就更新为当前数,全局最大结果保存在res中。

三、代码:

     

 

转载于:https://www.cnblogs.com/EstherLjy/p/9326158.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值