Leetcode 53. Maximum Subarray

本文介绍了一种寻找含至少一个数的连续子数组并求其最大和的算法。以[-2,1,-3,4,-1,2,1,-5,4]为例,[4,-1,2,1]具有最大和为6。文章提供了动态规划解决方案,并讨论了使用分治法的另一种实现。

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray [4,−1,2,1] has the largest sum = 6.

click to show more practice.

More practice:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

[Solution]
dynamic programming:
let local_suffix[0...i....n] represet max subarray contains the ith number in A[],
if (local_suffix[i - 1] <= 0)
  local_suffix[i] = A[i - 1]; else   local_suffix[i] = local_suffix[i - 1] + A[i - 1];
 1 int maxSubArray(int A[], int n) 
 2     {
 3         if (n <= 0)
 4             return -1;
 5         int global_suffix = INT_MIN, *local_suffix = new int[n + 1];
 6         
 7         local_suffix[0] = 0;
 8         for (int i = 1; i <= n; i++)
 9         {
10             if (local_suffix[i - 1] <= 0)
11                 local_suffix[i] = A[i - 1];
12             else
13                 local_suffix[i] = local_suffix[i - 1] + A[i - 1];
14             
15             if (global_suffix < local_suffix[i])
16                 global_suffix = local_suffix[i];
17         }
18         
19         delete[] local_suffix;
20         return global_suffix;
21     }

 However, this uses O(n) memory. We can use just local_suffix instead.

 1     int maxSubArray(int A[], int n) 
 2     {
 3         if (n <= 0)
 4             return -1;
 5         int global_suffix = INT_MIN, local_suffix;
 6         
 7         for (int i = 0; i < n; i++)
 8         {
 9             if (local_suffix <= 0)
10                 local_suffix = A[i];
11             else
12                 local_suffix = local_suffix + A[i];
13             
14             if (global_suffix < local_suffix)
15                 global_suffix = local_suffix;
16         }
17         
18         return global_suffix;
19     }

 

转载于:https://www.cnblogs.com/ym65536/p/4326614.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值