P3810 【模板】三维偏序(陌上花开)cdq分治

本文深入解析CDQ分治算法的应用与实现细节,通过一道典型题目示范如何使用CDQ分治结合树状数组解决复杂排序问题。文章提供完整的代码示例,并强调了避免使用memset的优化技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门:https://www.luogu.org/problemnew/show/P3810

cdq分治的模板题,第一层外部排序,第二层cdq归并排序,这个时候不用考虑第一次的顺序,第三次用树状数组。

注意,不要用memset,用队列保存加上的值,最后在把加上的值减去就行了。

#include <algorithm>
#include  <iterator>
#include  <iostream>
#include   <cstring>
#include   <cstdlib>
#include   <iomanip>
#include    <bitset>
#include    <cctype>
#include    <cstdio>
#include    <string>
#include    <vector>
#include     <stack>
#include     <cmath>
#include     <queue>
#include      <list>
#include       <map>
#include       <set>
#include   <cassert>
//#include <unordered_map>
/*

⊂_ヽ
  \\ Λ_Λ  来了老弟
   \('ㅅ')
    > ⌒ヽ
   /   へ\
   /  / \\
   レ ノ   ヽ_つ
  / /
  / /|
 ( (ヽ
 | |、\
 | 丿 \ ⌒)
 | |  ) /
'ノ )  Lノ

*/

using namespace std;
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue



typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
//typedef __int128 bll;
typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3;

//priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n'

#define boost ios::sync_with_stdio(false);cin.tie(0)
#define rep(a, b, c) for(int a = (b); a <= (c); ++ a)
#define max3(a,b,c) max(max(a,b), c);
#define min3(a,b,c) min(min(a,b), c);


const ll oo = 1ll<<17;
const ll mos = 0x7FFFFFFF;  //2147483647
const ll nmos = 0x80000000;  //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //18
const int mod = 998244353;
const double esp = 1e-8;
const double PI=acos(-1.0);
const double PHI=0.61803399;    //黄金分割点
const double tPHI=0.38196601;


template<typename T>
inline T read(T&x){
    x=0;int f=0;char ch=getchar();
    while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar();
    while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x=f?-x:x;
}

inline void cmax(int &x,int y){if(x<y)x=y;}
inline void cmax(ll &x,ll y){if(x<y)x=y;}
inline void cmin(int &x,int y){if(x>y)x=y;}
inline void cmin(ll &x,ll y){if(x>y)x=y;}
#define MODmul(a, b) ((a*b >= mod) ? ((a*b)%mod + 2*mod) : (a*b))
#define MODadd(a, b) ((a+b >= mod) ? ((a+b)%mod + 2*mod) : (a+b))

/*-----------------------showtime----------------------*/
            const int maxn = 1e5+9;
            struct node{
                int x,y,z;
                int id;
            }a[maxn],b[maxn],tmp[maxn];
            bool cmp(node a,node b){
                if(a.x != b.x) return a.x < b.x;
                if(a.y != b.y) return a.y < b.y;
                else return a.z < b.z;
            }
            int cnt[maxn],ans[maxn];

            int sum[maxn*2];
            int lowbit(int x){
                return x & (-x);
            }
            void add(int x,int c){
                while(x < maxn*2){
                    sum[x] += c;
                    x += lowbit(x);
                }
            }
            int getsum(int x){
                int res = 0;
                while(x > 0) {
                    res += sum[x];
                    x -= lowbit(x);
                }
                return res;
            }
            int lazy[maxn];
            queue<int>que;
            void cdq(int le,int ri){
                int mid = (le + ri) >> 1;
                if(ri - le <= 0) return ;
                cdq(le, mid);   cdq(mid+1, ri);

         //       memset(sum, 0, sizeof(sum));

                int p = le, q = mid+1;
                int id = 0;
                while(p <= mid && q <= ri){
                    if(a[p].y <= a[q].y) {
                        add(a[p].z, lazy[a[p].id]);
                        que.push(p);
                        tmp[++id] = a[p++];
                    }
                    else {
                        cnt[a[q].id] += getsum(a[q].z);
                        tmp[++id] = a[q++];
                    }
                }
                while(p <= mid) tmp[++id] = a[p++];
                while(q <= ri) {
                    cnt[a[q].id] += getsum(a[q].z);
                    tmp[++id] = a[q++];
                }
                while(!que.empty()){
                    int u = que.front(); que.pop();
                    add(a[u].z, -lazy[a[u].id]);
                }

                for(int i=1; i<=id; i++) a[i+le-1] = tmp[i];

            }
           // int out[maxn];
           map<p3,int>mp;


int main(){
            int n,k;
            scanf("%d%d", &n, &k);
            int tot = 0;
            rep(i, 1, n) {
                int x, y, z;
                scanf("%d%d%d", &x, &y, &z);
             //   read(x);read(y);read(z);
                p3 tp = p3(x, pii(y, z));
                if(mp.count(tp)) lazy[mp[tp]]++,cnt[mp[tp]]++;
                else {
                    tot++;
                    a[tot].id = tot;
                    a[tot].x = x;
                    a[tot].y = y;
                    a[tot].z = z;
                    mp[tp] = tot;
                    lazy[tot] = 1;
                }
            }
            sort(a+1, a+1+tot, cmp);

            cdq(1, tot);

            rep(i, 1, tot) ans[cnt[a[i].id]] += lazy[a[i].id];
            /*
            rep(i, 1, n) {
                out[a[i].id] = cnt[a[i].id];
            }
            rep(i, 1, n)
                cout<<cnt[i]<<" ";
            cout<<endl;
            */
            rep(i, 0, n-1) printf("%d\n", ans[i]);
            return 0;
}
View Code

 

转载于:https://www.cnblogs.com/ckxkexing/p/10459390.html

<think>首先,用户的问题是关于CDQ分治算法的基本原理及其应用场景。我需要根据系统级指令来构建我的回答。 系统级指令关键点: - 所有行内数学表达式必须使用$...$格式。 - 独立公式必须使用$$...$$格式并单独成段。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 回答中引用的段落末尾自然地添加引用标识。 - 回答结构清晰,帮助用户逐步解决问题,保证真实可靠。 参考站内引用: - 引用[1]:关于分治思想的描述,包括分块、递归等。 - 引用[2]:关于书籍的引用,不相关。 - 引用[3]:关于下载资源的链接,不相关。 用户真正的需求是理解CDQ分治的概念和原理,所以我需要专注于CDQ分治CDQ分治的基本原理: - CDQ分治是由陈丹琦(Chen Danqi)提出的一种算法,用于处理偏序问题,如三维偏序问题。 - 它是分治思想的一种应用,特别适合解决离线查询问题。 - 核心思想:将问题分成子问题,递归解决,然后合并结果,处理跨越子问题的部分。 应用场景: - 三维偏序问题:例如,给定点集,统计每个点满足某些条件的点数。 - 动态规划优化:如斜率优化等。 - 其他离线查询问题。 我的回答结构: 1. **介绍CDQ分治**:简要说明其背景和目的。 2. **基本原理**:解释算法步骤,使用数学表达式描述。 3. **应用场景**:列出常见应用。 4. **生成相关问题**:在最后添加相关问题。 5. **添加引用**:在引用段落末尾自然添加引用标识。 数学表达式: - 行内数学:如变量、点坐标等,使用$...$。 - 独立公式:如方程,使用$$...$$。 例如: - 行内:点$P_i = (a_i, b_i, c_i)$ - 独立:偏序关系公式。 生成相关问题: - 基于CDQ分治,如"CDQ分治如何优化三维偏序问题?"或"CDQ分治的时间复杂度分析?" 确保回答真实可靠: - 基于算法知识,CDQ分治常用于OI竞赛中处理偏序问题。 引用处理: - 参考引用[1]是关于分治思想的,我可以引用它来支持分治部分。 - 其他引用不相关,但系统说"请尽可能多的参考用户上一次的问题和你的回答",但用户没有上一次问题,所以基于当前引用。 最终回答大纲: - 开头:介绍CDQ分治。 - 原理部分:分步骤解释,使用LaTeX。 - 应用场景:列举例子。 - 相关问题:在最后添加。 - 结尾:自然结束。</think>### CDQ分治算法的基本原理及其应用场景 CDQ分治(Chen Danqi Divide and Conquer)是由中国计算机科学家陈丹琦提出的一种分治算法变体,主要用于处理离线查询问题,特别是多维偏序问题(如三维偏序)。它在算法竞赛和数据处理中应用广泛,能高效解决一些复杂问题。下面我将逐步解释其基本原理和应用场景,确保内容清晰可靠。 #### 1. CDQ分治的基本原理 CDQ分治基于经典分治思想,但针对偏序问题进行了优化。核心思路是将问题递归分解为子问题,处理子问题内部和子问题之间的影响,最后合并结果。算法主要分为三个步骤:分、治、合。以下是详细解释: - **分(Divide)**:将输入数据(如点集)按某一维度(通常是时间或索引)分成两个大致相等的子集,记为左子集$L$和右子集$R$。例如,给定点集$P = \{P_1, P_2, \dots, P_n\}$,其中每个点$P_i = (a_i, b_i, c_i)$表示三维坐标,我们按第一维$a_i$排序并分割: $$ \text{mid} = \left\lfloor \frac{n}{2} \right\rfloor $$ 这样得到$L = \{P_i \mid i \leq \text{mid}\}$和$R = \{P_i \mid i > \text{mid}\}$。递归地对$L$和$R$应用相同过程。 - **治(Conquer)**:递归处理左子集$L$和右子集$R$,解决子问题内部的偏序关系。例如,在三维偏序问题中,目标是统计每个点$P_i$满足$a_j \leq a_i, b_j \leq b_i, c_j \leq c_i$的点数$j$($j \neq i$)。递归调用确保子集内部的问题被解决。 - **合(Merge)**:合并子问题结果,并处理跨越子集$L$和$R$的影响。这是CDQ分治的关键: - 使用辅助数据结构(如树状数组或线段树)高效处理跨子集贡献。 - 例如,在三维偏序中,合并时需统计$L$中的点对$R$中点的贡献。具体做法: 1. 对$L$和$R$按第二维$b_i$排序。 2. 遍历$R$中的每个点$P_j$,同时维护一个树状数组,用于记录第三维$c_i$的累积值。 3. 对于$P_j$,查询树状数组中满足$c_k \leq c_j$的点数($k$来自$L$),并累加到结果。 这确保了跨子集贡献在$O(n \log n)$时间内完成。 整个算法的时间复杂度为$O(n \log^2 n)$,其中$n$是数据规模。递归公式可表示为: $$ T(n) = 2T\left(\frac{n}{2}\right) + O(n \log n) $$ 其中$O(n \log n)$来自合并步骤的排序和树状数组操作。CDQ分治通过“分而治之”高效处理了偏序关系[^1]。 #### 2. CDQ分治的应用场景 CDQ分治特别适合离线查询问题,其中数据点固定,查询可批量处理。常见应用包括: - **三维偏序问题**:如统计逆序对或点对关系。例如,在竞赛中,给定点集统计每个点“支配”的点数(即所有维度都小于等于该点的点)。CDQ分治能高效解决,时间复杂度优于暴力$O(n^2)$。 - **动态规划优化**:用于优化序列问题,如最长上升子序列(LIS)或斜率优化问题。通过分治处理状态转移,减少计算量。 - **离线查询处理**:在数据库或算法中,处理批量查询,如区间统计或范围查询。CDQ分治将查询排序后递归处理,避免实时开销。 - **其他领域**:在计算几何(如最近点对问题)和机器学习数据预处理中也有应用,但需结合具体算法调整。 CDQ分治的优势在于其通用性和效率,但要求问题具有“可分治性”,即子问题独立且合并步骤可高效实现。实际应用中,常结合树状数组等数据结构提升性能。 #### 相关问题 1. CDQ分治如何处理更高维度的偏序问题(如四维偏序)? 2. CDQ分治与普通分治算法的主要区别是什么? 3. CDQ分治在动态规划优化中的具体实现案例? [^1]: 分治思想的核心是递归分解问题,然后合并结果,这在CDQ分治中得到充分体现,如分割点集并递归处理子问题。 [^2]: 算法理论常参考经典书籍,但CDQ分治更常见于竞赛和算法论文。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值