Cheapest Palindrome [POJ3280] [区间DP] [经典]

本文介绍了一种算法,用于解决如何以最低成本修改奶牛的ID标签,使其成为回文串的问题。通过动态规划方法,计算出在考虑每个字符添加和删除成本的情况下,将任意字符串转换成回文串所需的最小成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一句话题意:每个字母添加和删除都相应代价(可以任意位置 增加/删除),求把原串变成回文串的最小代价

Description

保持对所有奶牛的跟踪是一项棘手的任务,因此农场主约翰已经安装了一个系统来实现自动化。他在每头奶牛身上安装了一个电子ID标签,系统将在奶牛经过扫描仪时读取。每个ID标记是从字母表中提取的一个字符串。

奶牛,它们是淘气的动物,有时试图通过倒着走来欺骗系统。如果一头奶牛的ID是“abcba”,那么无论她怎么走,它都能读到同样的东西,而拥有“abcb”的奶牛可能会注册为两个不同的ID(“abcb”和“bcba”)。

FJ希望改变奶牛的ID标签,这样无论奶牛走过哪个方向,他们都能读到同样的标签。例如,“abcb”可以通过在末尾添加“a”来改变,从而形成“abcba”,这样ID就会是一个回文串。更改ID的其他一些方法包括将三个字母“bcb”添加到“abcb”的开始,以获得ID“bcbabcb”或删除字母“a”以产生ID“bcb”。我们可以在字符串中的任意位置添加或删除字符,其长度比原来的字符串长或短。

不幸的是,ID标签是电子信息,每个字符插入或删除都有代价,这取决于要添加或删除的字符值。考虑到奶牛ID标签的内容以及插入或删除字母表中的每个字符的成本,找到更改ID标记的最小成本,从而满足FJ的需求。一个空的ID标签被认为满足了读取前后相同的要求。只有带有相关成本的字母才能添加到字符串中。

Input

Line 1: 两个空间分隔的整数:N和M (1 ≤ M ≤ 2,000) (1 ≤ N ≤ 26)
Line 2: 这一行包含了组成初始ID字符串的M个字符
Lines 3.. N+2: 每行包含三个空间分隔的实体:输入字母和两个整数的字符,分别是添加和删除该字符的成本(Ci<=10000)。
Output
Line 1: 单个整数的一行,这是更改给定名称标签的最小代价。
Sample Input
3 4
abcb
a 1000 1100
b 350 700
c 200 800
Sample Output
900
Hint
如果我们在最后插入一个“a”,得到“abcba”,成本是1000。如果我们在开始的时候删除“a”,就会得到“bcb”,代价就是1100。如果我们在字符串的开始处插入“bcb”,代价将是350 + 200 + 350 = 900,这是最小值。
Solution
首先,这是一个很明显的区间问题
如果一个区间[i,j]已经是回文序列了,就很好处理。
那我们设dp[i][j]为,使区间[i,j]成为回文序列的最小代价
当s[i-1]==s[j+1]时,dp[i+1][j-1]=dp[i][j]
其他情况:dp[i-1][j]=dp[i][j]+min(del[s[i-1]],add[s[i-1]])
     dp[i][j+1]=dp[i][j]+min(del[s[j+1]],add[s[j+1]])
tips:我们输入的时候就保留增加和减小的最小值
Code
 1 #include<cstdio>
 2 #include<cstring>
 3 #include<iostream>
 4 #include<algorithm>
 5 #define RG register int
 6 #define rep(i,a,b)    for(RG i=a;i<=b;i++)
 7 #define per(i,a,b)    for(RG i=a;i>=b;i--)
 8 #define inf (1<<30)
 9 using namespace std;
10 int n,m;
11 int val[130],dp[2005][2005];
12 char s[2005];
13 inline int read()
14 {
15     int x=0,f=1;char c=getchar();
16     while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
17     while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
18     return x*f;
19 }
20 
21 void DP()
22 {
23     rep(k,2,m)
24     {
25         for(RG i=1,j=k;j<=m;j++,i++)
26         {
27             dp[i][j]=inf;
28             if(s[i]==s[j])    dp[i][j]=dp[i+1][j-1];
29             else
30             {
31                 dp[i][j]=min(dp[i][j],dp[i+1][j]+val[s[i]]);
32                 dp[i][j]=min(dp[i][j],dp[i][j-1]+val[s[j]]);
33             }
34         }
35     }
36     printf("%d",dp[1][m]);
37 }
38 
39 int main()
40 {
41     char ch;int x,y;
42     n=read(),m=read();
43     scanf("%s",s+1);
44     rep(i,1,n)    cin>>ch,x=read(),y=read(),val[ch]=min(x,y);
45     DP();
46     return 0;
47 }
View Code

 

转载于:https://www.cnblogs.com/ibilllee/p/9210988.html

内容概要:该PPT详细介绍了企业架构设计的方法论,涵盖业务架构、数据架构、应用架构和技术架构四大核心模块。首先分析了企业架构现状,包括业务、数据、应用和技术四大架构的内容和关系,明确了企业架构设计的重要性。接着,阐述了新版企业架构总体框架(CSG-EAF 2.0)的形成过程,强调其融合了传统架构设计(TOGAF)和领域驱动设计(DDD)的优势,以适应数字化转型需求。业务架构部分通过梳理企业级和专业级价值流,细化业务能力、流程和对象,确保业务战略的有效落地。数据架构部分则遵循五大原则,确保数据的准确、一致和高效使用。应用架构方面,提出了分层解耦和服务化的设计原则,以提高灵活性和响应速度。最后,技术架构部分围绕技术框架、组件、平台和部署节点进行了详细设计,确保技术架构的稳定性和扩展性。 适合人群:适用于具有一定企业架构设计经验的IT架构师、项目经理和业务分析师,特别是那些希望深入了解如何将企业架构设计与数字化转型相结合的专业人士。 使用场景及目标:①帮助企业和组织梳理业务流程,优化业务能力,实现战略目标;②指导数据管理和应用开发,确保数据的一致性和应用的高效性;③为技术选型和系统部署提供科学依据,确保技术架构的稳定性和扩展性。 阅读建议:此资源内容详尽,涵盖企业架构设计的各个方面。建议读者在学习过程中,结合实际案例进行理解和实践,重点关注各架构模块之间的关联和协同,以便更好地应用于实际工作中。
资 源 简 介 独立分量分析(Independent Component Analysis,简称ICA)是近二十年来逐渐发展起来的一种盲信号分离方法。它是一种统计方法,其目的是从由传感器收集到的混合信号中分离相互独立的源信号,使得这些分离出来的源信号之间尽可能独立。它在语音识别、电信和医学信号处理等信号处理方面有着广泛的应用,目前已成为盲信号处理,人工神经网络等研究领域中的一个研究热点。本文简要的阐述了ICA的发展、应用和现状,详细地论述了ICA的原理及实现过程,系统地介绍了目前几种主要ICA算法以及它们之间的内在联系, 详 情 说 明 独立分量分析(Independent Component Analysis,简称ICA)是近二十年来逐渐发展起来的一种盲信号分离方法。它是一种统计方法,其目的是从由传感器收集到的混合信号中分离相互独立的源信号,使得这些分离出来的源信号之间尽可能独立。它在语音识别、电信和医学信号处理等信号处理方面有着广泛的应用,目前已成为盲信号处理,人工神经网络等研究领域中的一个研究热点。 本文简要的阐述了ICA的发展、应用和现状,详细地论述了ICA的原理及实现过程,系统地介绍了目前几种主要ICA算法以及它们之间的内在联系,在此基础上重点分析了一种快速ICA实现算法一FastICA。物质的非线性荧光谱信号可以看成是由多个相互独立的源信号组合成的混合信号,而这些独立的源信号可以看成是光谱的特征信号。为了更好的了解光谱信号的特征,本文利用独立分量分析的思想和方法,提出了利用FastICA算法提取光谱信号的特征的方案,并进行了详细的仿真实验。 此外,我们还进行了进一步的研究,探索了其他可能的ICA应用领域,如音乐信号处理、图像处理以及金融数据分析等。通过在这些领域中的实验和应用,我们发现ICA在提取信号特征、降噪和信号分离等方面具有广泛的潜力和应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值