HttpClient(4.3.5) - HTTP Execution Context

本文介绍了HTTP协议的无状态特性及其在实际应用中如何通过HTTP上下文维护状态信息。详细解释了如何使用HttpClient在多个相关请求间共享上下文,以保持会话状态,并提供了配置请求及处理响应的具体示例。

Originally HTTP has been designed as a stateless, response-request oriented protocol. However, real world applications often need to be able to persist state information through several logically related request-response exchanges. In order to enable applications to maintain a processing state HttpClient allows HTTP requests to be executed within a particular execution context, referred to as HTTP context. Multiple logically related requests can participate in a logical session if the same context is reused between consecutive requests. HTTP context functions similarly to a java.util.Map<String, Object>. It is simply a collection of arbitrary named values. An application can populate context attributes prior to request execution or examine the context after the execution has been completed.

HttpContext can contain arbitrary objects and therefore may be unsafe to share between multiple threads. It is recommended that each thread of execution maintains its own context.

In the course of HTTP request execution HttpClient adds the following attributes to the execution context:

  • HttpConnection instance representing the actual connection to the target server.

  • HttpHost instance representing the connection target.

  • HttpRoute instance representing the complete connection route

  • HttpRequest instance representing the actual HTTP request. The final HttpRequest object in the execution context always represents the state of the message exactly as it was sent to the target server. Per default HTTP/1.0 and HTTP/1.1 use relative request URIs. However if the request is sent via a proxy in a non-tunneling mode then the URI will be absolute.

  • HttpResponse instance representing the actual HTTP response.

  • java.lang.Boolean object representing the flag indicating whether the actual request has been fully transmitted to the connection target.

  • RequestConfig object representing the actual request configuation.

  • java.util.List<URI> object representing a collection of all redirect locations received in the process of request execution.

One can use HttpClientContext adaptor class to simplify interractions with the context state.

HttpContext context = <...>
HttpClientContext clientContext = HttpClientContext.adapt(context);
HttpHost target = clientContext.getTargetHost();
HttpRequest request = clientContext.getRequest();
HttpResponse response = clientContext.getResponse();
RequestConfig config = clientContext.getRequestConfig();

Multiple request sequences that represent a logically related session should be executed with the same HttpContext instance to ensure automatic propagation of conversation context and state information between requests.

In the following example the request configuration set by the initial request will be kept in the execution context and get propagated to the consecutive requests sharing the same context.

CloseableHttpClient httpclient = HttpClients.createDefault();
RequestConfig requestConfig = RequestConfig.custom()
        .setSocketTimeout(1000)
        .setConnectTimeout(1000)
        .build();

HttpGet httpget1 = new HttpGet("http://localhost/1");
httpget1.setConfig(requestConfig);
CloseableHttpResponse response1 = httpclient.execute(httpget1, context);
try {
    HttpEntity entity1 = response1.getEntity();
} finally {
    response1.close();
}
HttpGet httpget2 = new HttpGet("http://localhost/2");
CloseableHttpResponse response2 = httpclient.execute(httpget2, context);
try {
    HttpEntity entity2 = response2.getEntity();
} finally {
    response2.close();
}

 

转载于:https://www.cnblogs.com/huey/p/5721082.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值