HDOJ 4497 GCD and LCM

组合数学:GCD与LCM问题求解
本文探讨了在给定整数G和L的情况下,如何找出满足特定条件(x, y, z)的解决方案数量。通过计算最大公约数(GCD)和最小公倍数(LCM),读者将了解如何解决此类数学问题。

组合数学

GCD and LCM

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 451    Accepted Submission(s): 216


Problem Description
Given two positive integers G and L, could you tell me how many solutions of (x, y, z) there are, satisfying that gcd(x, y, z) = G and lcm(x, y, z) = L? 
Note, gcd(x, y, z) means the greatest common divisor of x, y and z, while lcm(x, y, z) means the least common multiple of x, y and z. 
Note 2, (1, 2, 3) and (1, 3, 2) are two different solutions.
 

 

Input
First line comes an integer T (T <= 12), telling the number of test cases. 
The next T lines, each contains two positive 32-bit signed integers, G and L. 
It’s guaranteed that each answer will fit in a 32-bit signed integer.
 

 

Output
For each test case, print one line with the number of solutions satisfying the conditions above.
 

 

Sample Input
2
6 72
7 33
 

 

Sample Output
72
0
 

 

Source
 

 

Recommend
liuyiding
 

 

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 
 5 using namespace std;
 6 
 7 int main()
 8 {
 9     int t,L,G;
10     scanf("%d",&t);
11     while(t--)
12     {
13         scanf("%d%d",&G,&L);
14         if(L%G!=0)
15         {
16             puts("0");
17             continue;
18         }
19         int sk=L/G;
20         int pp=2,ans=1,cnt;
21         while(sk!=1)
22         {
23             cnt=0;
24             while(sk%pp==0)
25             {
26                 cnt++;
27                 sk/=pp;
28             }
29             pp++;
30             if(cnt!=0)
31             {
32                 ans*=cnt*6;
33             }
34         }
35         printf("%d\n",ans);
36     }
37     return 0;
38 }

 

转载于:https://www.cnblogs.com/CKboss/p/3373031.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值