hdu5443 The Water Problem

本文介绍了一种解决区间最大值查询问题的有效算法。通过预处理数据建立动态规划表,实现快速查询任意指定区间内的最大值,适用于需要频繁进行区间最大值查询的应用场景。

The Water Problem

Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 602    Accepted Submission(s): 485


Problem Description
In Land waterless, water is a very limited resource. People always fight for the biggest source of water. Given a sequence of water sources with a1,a2,a3,...,an representing the size of the water source. Given a set of queries each containing 2 integers l and r, please find out the biggest water source between al and ar.
 

 

Input
First you are given an integer T(T10) indicating the number of test cases. For each test case, there is a number n(0n1000) on a line representing the number of water sources. n integers follow, respectively a1,a2,a3,...,an, and each integer is in {1,...,106}. On the next line, there is a number q(0q1000) representing the number of queries. After that, there will be q lines with two integers l and r(1lrn) indicating the range of which you should find out the biggest water source.
 

 

Output
For each query, output an integer representing the size of the biggest water source.
 

 

Sample Input
3 1 100 1 1 1 5 1 2 3 4 5 5 1 2 1 3 2 4 3 4 3 5 3 1 999999 1 4 1 1 1 2 2 3 3 3
 

 

Sample Output
100 2 3 4 4 5 1 999999 999999 1
 

 

Source
 

 

Recommend
hujie   |   We have carefully selected several similar problems for you:   5449  5448  5447  5446  5445
区间求最大值
次裸裸的RMQ,套上模板即过
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<math.h>
#include<algorithm>
using namespace std;
#define N 50005
int dpmin[N][20],dpmax[N][20];
int main()
{    
    int t;
    scanf("%d",&t);
    while(t--){
    int i, j, n, m;
    scanf("%d",&n);
    memset(dpmin,0,sizeof(dpmin));
    memset(dpmax,0,sizeof(dpmax));
    for(i=1; i<=n; i++)
    {
        scanf("%d", &dpmin[i][0]);
        dpmax[i][0]=dpmin[i][0];
    }
    int mm=floor(log(1.0*n)/log(2.0));
    for(j=1; j<=mm; j++)
        for(i=1; i<=n; i++)
        {
            if((i+(1<<(j-1)))<=n)
            {
    //            dpmin[i][j]=min(dpmin[i][j-1], dpmin[i+(1<<(j-1))][j-1]);
                dpmax[i][j]=max(dpmax[i][j-1], dpmax[i+(1<<(j-1))][j-1]);
            }
        }
    int x, y;
        
        scanf("%d",&m);
    for(int i=1; i<=m; i++)
    {
        scanf("%d%d", &x, &y);
        int  mid=floor(log(y*1.0-x+1)/log(2.0));
        int maxnum=max(dpmax[x][mid], dpmax[y-(1<<mid)+1][mid]);
    //    int minnum=min(dpmin[x][mid], dpmin[y-(1<<mid)+1][mid]);
        printf("%d\n", maxnum);
    }
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/13224ACMer/p/4812142.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值