codeforces 232D Fence

本文探讨了如何解决在给定长度为n的木栅栏中,从左到右排列,高度分别为h1, h2,..., hn的木板序列,找出所有长度相等且满足特定高度条件的匹配子序列的数量。通过输入序列长度n,各木板的高度序列,以及询问区间[l, r],输出询问区间内匹配子序列的数量。

John Doe has a crooked fence, consisting of n rectangular planks, lined up from the left to the right: the plank that goes i-th (1 ≤ i ≤ n)(from left to right) has width 1 and height hi. We will assume that the plank that goes i-th (1 ≤ i ≤ n) (from left to right) has index i.

piece of the fence from l to r (1 ≤ l ≤ r ≤ n) is a sequence of planks of wood with indices from l to r inclusive, that is, planks with indices l, l + 1, ..., r. The width of the piece of the fence from l to r is value r - l + 1.

Two pieces of the fence from l1 to r1 and from l2 to r2 are called matching, if the following conditions hold:

  • the pieces do not intersect, that is, there isn't a single plank, such that it occurs in both pieces of the fence;
  • the pieces are of the same width;
  • for all i (0 ≤ i ≤ r1 - l1) the following condition holds: hl1 + i + hl2 + i = hl1 + hl2.

John chose a few pieces of the fence and now wants to know how many distinct matching pieces are for each of them. Two pieces of the fence are distinct if there is a plank, which belongs to one of them and does not belong to the other one.

Input

The first line contains integer n (1 ≤ n ≤ 105) — the number of wood planks in the fence. The second line contains n space-separated integers h1, h2, ..., hn (1 ≤ hi ≤ 109) — the heights of fence planks.

The third line contains integer q (1 ≤ q ≤ 105) — the number of queries. Next q lines contain two space-separated integers li and ri(1 ≤ li ≤ ri ≤ n) — the boundaries of the i-th piece of the fence.

Output

For each query on a single line print a single integer — the number of pieces of the fence that match the given one. Print the answers to the queries in the order, in which the queries are given in the input.

Sample test(s)
input
10
1 2 2 1 100 99 99 100 100 100
6
1 4
1 2
3 4
1 5
9 10
10 10
output
1
2
2
0
2
9

题解:http://tieba.baidu.com/p/2114943791?pid=28521015525&see_lz=1
code:
  1 #include<cstdio>
  2 #include<iostream>
  3 #include<cmath>
  4 #include<cstring>
  5 #include<algorithm>
  6 #define maxn 200005
  7 using namespace std;
  8 char ch;
  9 int n,q,N,m,l,r,h[maxn],d[maxn],s[maxn],st[18][maxn];
 10 int SA[maxn],rank[maxn],t1[maxn],t2[maxn],height[maxn],sum[maxn];
 11 struct DATA{
 12     int v,id;
 13 }list[maxn];
 14 bool cmp(DATA a,DATA b){
 15     if (a.v!=b.v) return a.v<b.v;
 16     return a.id<b.id;
 17 }
 18 struct seg{
 19     int tot,son[maxn*80][2],cnt[maxn*80];
 20     void init(){tot=N;}
 21     void insert(int k,int p,int l,int r,int x){
 22         if (l==r){cnt[k]=cnt[p]+1;return;}
 23         int m=(l+r)>>1;
 24         if (x<=m){
 25             cnt[k]=cnt[p]+1,son[k][0]=++tot,son[k][1]=son[p][1];
 26             insert(son[k][0],son[p][0],l,m,x);
 27         }
 28         else{
 29             cnt[k]=cnt[p]+1,son[k][0]=son[p][0],son[k][1]=++tot;
 30             insert(son[k][1],son[p][1],m+1,r,x);
 31         }
 32     }
 33     int query(int k,int l,int r,int x,int y){
 34         if (!k||x>y) return 0;
 35         if (l==x&&r==y) return cnt[k];
 36         int m=(l+r)>>1;
 37         if (y<=m) return query(son[k][0],l,m,x,y);
 38         else if (x<=m) return query(son[k][0],l,m,x,m)+query(son[k][1],m+1,r,m+1,y);
 39         else return query(son[k][1],m+1,r,x,y);
 40     }
 41     int query(int l,int r,int x,int y){return query(r,1,N,x,y)-query(l-1,1,N,x,y);}
 42 }T;
 43 bool ok;
 44 void read(int &x){
 45     for (ok=0,ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=1;
 46     for (x=0;isdigit(ch);x=x*10+ch-'0',ch=getchar());
 47     if (ok) x=-x;
 48 }
 49 void get_SA(){
 50     for (int i=1;i<=N;i++) list[i]=(DATA){s[i],i};
 51     sort(list+1,list+N+1,cmp);
 52     for (int i=1;i<=N;i++) SA[i]=list[i].id;
 53     int *x=t1,*y=t2,tot=0;
 54     x[SA[1]]=m=1;
 55     for (int i=2;i<=N;i++){
 56         if (s[SA[i]]!=s[SA[i-1]]) m++;
 57         x[SA[i]]=m;
 58     }
 59     for (int len=1;tot<N;len<<=1,m=tot){
 60         tot=0;
 61         for (int i=N-len+1;i<=N;i++) y[++tot]=i;
 62         for (int i=1;i<=N;i++) if (SA[i]>len) y[++tot]=SA[i]-len;
 63         for (int i=1;i<=m;i++) sum[i]=0;
 64         for (int i=1;i<=N;i++) sum[x[y[i]]]++;
 65         for (int i=1;i<=m;i++) sum[i]+=sum[i-1];
 66         for (int i=N;i>=1;i--) SA[sum[x[y[i]]]--]=y[i];
 67         swap(x,y),x[SA[1]]=tot=1;
 68         for (int i=2;i<=N;i++){
 69             if (y[SA[i]]!=y[SA[i-1]]||y[SA[i]+len]!=y[SA[i-1]+len]) tot++;
 70             x[SA[i]]=tot;    
 71         }
 72     }
 73     for (int i=1;i<=N;i++) rank[i]=x[i];
 74 }
 75 void get_height(){
 76     for (int i=1,j=0;i<=N;i++){
 77         if (rank[i]==1) continue;
 78         while (s[i+j]==s[SA[rank[i]-1]+j]) j++;
 79         height[rank[i]]=j;
 80         if (j>0) j--;
 81     }
 82 }
 83 void prepare(){
 84     for (int i=1;i<=N;i++) st[0][i]=height[i];
 85     for (int i=1;i<=17;i++)
 86         for (int j=1;j<=N;j++){
 87             st[i][j]=st[i-1][j];
 88             if (j+(1<<(i-1))<=N) st[i][j]=min(st[i][j],st[i-1][j+(1<<(i-1))]);
 89         }
 90     T.init();
 91     for (int i=1;i<=N;i++) T.insert(i,i-1,1,N,SA[i]);
 92 }
 93 int calc(int l,int r){
 94     if (l>r) swap(l,r);
 95     int t=0; l++;
 96     if (l==r) return height[r];
 97     for (;l+(1<<t)<r;t++); 
 98     if (l+(1<<t)>r) t--;
 99     return min(st[t][l],st[t][r-(1<<t)+1]);
100 }
101 int find(int s,int x,int op){
102     int l,r,m;
103     if (op) l=s,r=N;else l=1,r=s;
104     while (l!=r){
105         m=(l+r)>>1;
106         if (op) m++;
107         if (calc(m,s)<x){
108             if (op) r=m-1;
109             else l=m+1;    
110         }
111         else{
112             if (op) l=m;
113             else r=m;
114         }
115     }
116     return l;
117 }
118 void query(int l,int r){
119     int x=find(rank[l],r-l,0),y=find(rank[l],r-l,1);
120     printf("%d\n",T.query(x,y,n+1,n+(l-1)-(r-l))+T.query(x,y,n+(r+1),N));
121 }
122 int main(){
123     read(n);
124     for (int i=1;i<=n;i++) read(h[i]);
125     for (int i=1;i<n;i++) d[i]=h[i+1]-h[i];
126     for (int i=1;i<n;i++) s[i]=d[i];
127     s[n]=1;
128     for (int i=1;i<n;i++) s[n+i]=-d[i];
129     N=(n<<1)-1;
130     get_SA(),get_height(),prepare();
131     for (read(q);q;q--){
132         read(l),read(r);
133         if (l==r) printf("%d\n",n-1);
134         else query(l,r);
135     }
136     return 0;
137 }

 

转载于:https://www.cnblogs.com/chenyushuo/p/4729221.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值