Query on a tree II

本文介绍了一种解决树上查询问题的方法,通过使用倍增技术和深度优先搜索来高效地找到两个节点间的路径长度及路径上的第k个节点。具体实现包括了倍增父亲节点和路径距离、最近公共祖先(LCA)查询以及路径距离计算等功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Query on a tree II

You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, 3...N-1. Each edge has an integer value assigned to it, representing its length.
We will ask you to perfrom some instructions of the following form:
DIST a b : ask for the distance between node a and node b
KTH a b k : ask for the k-th node on the path from node a to node b
Example:
N = 6
1 2 1 // edge connects node 1 and node 2 has cost 1
2 4 1
2 5 2
1 3 1
3 6 2

Path from node 4 to node 6 is 4 -> 2 -> 1 -> 3 -> 6
DIST 4 6 : answer is 5 (1 + 1 + 1 + 2 = 5)
KTH 4 6 4 : answer is 3 (the 4-th node on the path from node 4 to node 6 is 3)

The first line of input contains an integer t, the number of test cases (t <= 25). t test cases follow.

For each test case:
In the first line there is an integer N (N <= 10000)
In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between a, b of cost c (c <= 100000)
The next lines contain instructions "DIST a b" or "KTH a b k"
The end of each test case is signified by the string "DONE".
There is one blank line between successive tests.

For each "DIST" or "KTH" operation, write one integer representing its result.
Print one blank line after each test.

Input:

1
6
1 2 1
2 4 1
2 5 2
1 3 1
3 6 2
DIST 4 6
KTH 4 6 4
DONE

Output:

5
3
```
树上倍增即可
同时倍增父亲和距离
注意计算中的+1 -1

#include <bits/stdc++.h>
using namespace std;
#define maxn (int)(1e5+10)
#define LL long long

inline int read(){
    int rtn=0,f=1;char ch=getchar();
    while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
    while(isdigit(ch))rtn=(rtn<<1)+(rtn<<3)+ch-'0',ch=getchar();
    return rtn*f;
}

struct node{
    int a,b,nt,w;
}e[maxn];

LL w[maxn][21];
int fa[maxn][21],dep[maxn],p[maxn],cnt;

inline void add(int x,int y,int z){
    e[++cnt].a=x;e[cnt].b=y;e[cnt].w=z;
    e[cnt].nt=p[x];p[x]=cnt;
}

inline void dfs(int k){
    for(int i=1;i<=20;i++)fa[k][i]=fa[fa[k][i-1]][i-1];
    for(int i=1;i<=20;i++)w[k][i]=w[fa[k][i-1]][i-1]+w[k][i-1];
    for(int i=p[k];i;i=e[i].nt){
        int kk=e[i].b;
        if(kk==fa[k][0])continue;
        fa[kk][0]=k;dep[kk]=dep[k]+1;w[kk][0]=e[i].w;
        dfs(kk);
    }
}

inline int lca(int x,int y){
    if(dep[x]<dep[y])swap(x,y);
    for(int i=20;i>=0;i--){
        if(dep[fa[x][i]]>=dep[y])x=fa[x][i];
    } 
    if(x==y)return y;
    for(int i=20;i>=0;i--){
        if(fa[x][i]!=fa[y][i])
            x=fa[x][i],y=fa[y][i];
    }return fa[x][0];
}

inline LL dis(int x,int y){
    LL rtn=0;
    int l=lca(x,y);
    for(int i=20;i>=0;i--){
        if(dep[fa[x][i]]>=dep[l])
            rtn+=w[x][i],x=fa[x][i];
    }
    for(int i=20;i>=0;i--){
        if(dep[fa[y][i]]>=dep[l])
            rtn+=w[y][i],y=fa[y][i];
    }return rtn;
}

inline int kth(int x,int y,int k){
    int l=lca(x,y);
    if(k<=dep[x]-dep[l]){
        k-=1;
        for(int i=20;i>=0;i--){
            if(1<<i<=k)x=fa[x][i],k-=1<<i;
        }
        return x;
    }
    else if(k>dep[x]-dep[l]){
        k=(dep[y]-dep[l]-(k-(dep[x]-dep[l])))+1;
        for(int i=20;i>=0;i--){
            if(1<<i<=k)y=fa[y][i],k-=1<<i;
        }
        return y;
    }
}

int main(){
    int T=read();
    while(T--){
        int n=read();cnt=0;
        memset(p,0,sizeof(p));
        memset(w,0,sizeof(w));
        memset(fa,0,sizeof(fa));
        for(int i=1;i<n;i++){
            int a=read(),b=read(),w=read();
            add(a,b,w);add(b,a,w);
        }
        dfs(1);
        while(true){
            char ch[10];scanf("%s",ch);
            if(ch[1]=='O')break;
            else if(ch[1]=='T'){
                int x=read(),y=read(),k=read();
                printf("%d\n",kth(x,y,k));
            }
            else if(ch[1]=='I'){
                int x=read(),y=read();
                printf("%lld\n",dis(x,y));
            }
        }
    }
    return 0;
} 

转载于:https://www.cnblogs.com/DexterYsw/p/7954838.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值