POJ 1258 Agri-Net(最小生成树)

本文通过解决农民约翰为实现竞选承诺而面临的连接各农场互联网的问题,介绍了如何使用Kruskal和Prim算法找到连接所有节点所需的最小生成树。文章提供了详细的代码实现,并对比了两种算法的特点。
Agri-Net
Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u
Submit  Status  Practice  POJ 1258

Description

Farmer John has been elected mayor of his town! One of his campaign promises was to bring internet connectivity to all farms in the area. He needs your help, of course. 
Farmer John ordered a high speed connection for his farm and is going to share his connectivity with the other farmers. To minimize cost, he wants to lay the minimum amount of optical fiber to connect his farm to all the other farms. 
Given a list of how much fiber it takes to connect each pair of farms, you must find the minimum amount of fiber needed to connect them all together. Each farm must connect to some other farm such that a packet can flow from any one farm to any other farm. 
The distance between any two farms will not exceed 100,000. 

Input

The input includes several cases. For each case, the first line contains the number of farms, N (3 <= N <= 100). The following lines contain the N x N conectivity matrix, where each element shows the distance from on farm to another. Logically, they are N lines of N space-separated integers. Physically, they are limited in length to 80 characters, so some lines continue onto others. Of course, the diagonal will be 0, since the distance from farm i to itself is not interesting for this problem.

Output

For each case, output a single integer length that is the sum of the minimum length of fiber required to connect the entire set of farms.

Sample Input

4
0 4 9 21
4 0 8 17
9 8 0 16
21 17 16 0

Sample Output

28

裸最小生成树 可以用kruskal和prim来完成

kruskal
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
int n,coun;
struct road
{
    int f,t;
    int w;
};
road vil[10000+10];
int fa[10000+10];
int cmp(road a ,road b) {return a.w<b.w;}
int find(int x)
{
    return fa[x]==x?x:fa[x]=find(fa[x]);
}
int Kruskal()
{
    int ans=0;
    for(int i=0;i<coun;i++) fa[i]=i;
    sort(vil,vil+coun,cmp);
    for(int i=0;i<coun;i++)
    {
        int x=find(vil[i].f);
        int y=find(vil[i].t);
        if(x!=y)
        {
            fa[x]=y;
            ans+=vil[i].w;
        }
    }
    return ans;
}
int main()
{

    int i,j;
    while(scanf("%d",&n)!=EOF)
    {
        coun=0;
        for(i=1;i<=n;i++)
        {
            for(j=1;j<=n;j++)
            {
                int waste;
                scanf("%d",&waste);
                if(i<j)
                {
                    vil[coun].f=i;
                    vil[coun].t=j;
                    vil[coun].w=waste;
                    coun++;
                }
            }
        }
        int ans=Kruskal();
        printf("%d\n",ans);
    }
    return  0;
}
View Code

 

 prim

(网上贴来的代码 感觉明显kruskal比较简单粗暴啊)

#include<iostream>
using namespace std;

const int inf=100001;      //无限大

int n;   //农场数量
int dist[101][101];

int prim(void)
{
    int s=1;
    int m=1;
    bool u[101]={false};
    u[s]=true;

    int min_w;
    int prim_w=0;
    int point;
    int low_dis[101];

    /*Initial*/

    for(int i=1;i<=n;i++)
        low_dis[i]=inf;

    /*Prim Algorithm*/

    while(true)
    {
        if(m==n)
            break;
        min_w=inf;
        for(int i=2;i<=n;i++)
        {
            if(!u[i] && low_dis[i]>dist[s][i])
                low_dis[i] = dist[s][i];
            if(!u[i] && min_w>low_dis[i])
            {
                min_w = low_dis[i];
                point=i;
            }
        }
        s=point;
        u[s]=true;
        prim_w+=min_w;
        m++;
    }
    return prim_w;
}

int main(void)
{
    while(cin>>n)
    {
        /*Input*/

        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                cin>>dist[i][j];

        /*Prim Algorithm & Output*/

        cout<<prim()<<endl;
    }
    return 0;
}
View Code

 

转载于:https://www.cnblogs.com/sola1994/p/4134873.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值