[再寄小读者之数学篇](2014-05-27 矩阵的迹与 Jacobian)

本文解析了两个关于矩阵导数的问题:一是证明对于任意矩阵( B ),有( \nabla_A tr(AB) = B^T );二是证明对于任意矩阵( A, B, C ),有( \nabla_A tr(ABA^TC) = CAB + C^TAB^T )。通过详细的推导步骤,展示了如何应用矩阵微积分来解决这类问题。

(from MathFlow) 设 $A=(a_{ij})$, 且定义 $$\bex \n_A f(A)=\sex{\cfrac{\p f}{\p a_{ij}}}. \eex$$ 试证: (1) $\n_A\tr (AB)=B^t$; (2) $\n_A \tr(ABA^tC)=CAB+C^tAB^t$.

证明: (1) $$\beex \bea \n_A\tr (AB) &=\sex{\cfrac{\p }{\p a_{ij}}\sum_{m,n}a_{mn}b_{nm}}\\ &=\sex{\sum_{m,n} \delta_{mi}\delta_{nj}b_{nm}}\\ &=\sex{b_{ji}}\\ &=B^t. \eea \eeex$$ (2) $$\beex \bea \n_A\tr (ABA^tC) &=\sex{\cfrac{\p }{\p a_{ij}} \sum_{m,n,p,q} a_{mn}b_{np}a_{qp}c_{qm} }\\ &=\sex{ \sum_{m,n,p,q} \delta_{mi}\delta_{nj}b_{np}a_{qp}c_{qm} +\sum_{m,n,p,q} a_{mn}b_{np}\delta_{qi}\delta_{pj}c_{qm} }\\ &=\sex{ \sum_{p,q} b_{jp}a_{qp}c_{qi} +\sum_{m,n} a_{mn}b_{nj}c_{im} }\\ &=\sex{ \sum_{p,q} c_{qi}a_{qp}b_{jp} +\sum_{m,n} c_{im}a_{mn}b_{nj} }\\ &=C^tAB^t+CAB. \eea \eeex$$

转载于:https://www.cnblogs.com/zhangzujin/p/3755951.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值