Wet Shark and Bishops(思维)

本文介绍了一种算法,用于解决在一个1000x1000的棋盘上,给定若干象的位置后,如何计算互相攻击的象对的数量。通过观察发现位于同一对角线上的象满足特定坐标条件,利用这一特点设计了高效的解决方案。

Today, Wet Shark is given n bishops on a 1000 by 1000 grid. Both rows and columns of the grid are numbered from 1 to 1000. Rows are numbered from top to bottom, while columns are numbered from left to right.

Wet Shark thinks that two bishops attack each other if they share the same diagonal. Note, that this is the only criteria, so two bishops may attack each other (according to Wet Shark) even if there is another bishop located between them. Now Wet Shark wants to count the number of pairs of bishops that attack each other.

Input

The first line of the input contains n (1 ≤ n ≤ 200 000) — the number of bishops.

Each of next n lines contains two space separated integers xi and yi (1 ≤ xi, yi ≤ 1000) — the number of row and the number of column where i-th bishop is positioned. It's guaranteed that no two bishops share the same position.

Output

Output one integer — the number of pairs of bishops which attack each other.

Example

Input
5
1 1
1 5
3 3
5 1
5 5
Output
6
Input
3
1 1
2 3
3 5
Output
0

Note

In the first sample following pairs of bishops attack each other: (1, 3), (1, 5), (2, 3), (2, 4), (3, 4) and (3, 5). Pairs (1, 2), (1, 4), (2, 5) and (4, 5) do not attack each other because they do not share the same diagonal.

 

 

题意:在对角线上的相会相互攻击,求出能够相互攻击的相的对数?

题解:仔细观察能够发现,在同一对角线上的相满足x+y or x-y相等,这里需要注意的是x-y可能会出现负数,所以这里用x-y+3000来代替x-y

AC代码

#include<stdio.h>
#include<string.h>

int main()
{
    int n;
    int x, y;
    int attack[5000];
    int sum;
    while(~scanf("%d", &n))
    {
        sum = 0;
        memset(attack, 0, sizeof(attack));
        for(int i = 0; i < n; i++)
        {
            scanf("%d %d", &x, &y);
            attack[x+y]++;
            attack[x-y+3000]++;
        }
        for(int i = 0; i < 5000; i++)
        {
            if(attack[i] > 1)
                sum += attack[i]*(attack[i]-1)/2;
        }
        printf("%d\n", sum);
    }

    return 0;
}
View Code

 

转载于:https://www.cnblogs.com/ruruozhenhao/p/8525560.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值