Unique Paths II 解答

本文介绍了一种解决网格中存在障碍物时寻找从起点到终点的唯一路径数量的方法。通过动态规划,考虑了障碍物对路径的影响。

Question

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

The total number of unique paths is 2.

Solution

Similar with "Unique Paths", there are two differences to be considered:

1. for dp[0][i] and dp[i][0], if there exists previous element which equals to 1, then the rest elements are all unreachable.

2. for dp[i][j], if it equals to 1, then it's unreachable.

 1 public class Solution {
 2     public int uniquePathsWithObstacles(int[][] obstacleGrid) {
 3         if (obstacleGrid == null)
 4             return 0;
 5         int m = obstacleGrid.length, n = obstacleGrid[0].length;
 6         int[][] dp = new int[m][n];
 7         // Check first element
 8         if (obstacleGrid[0][0] == 1)
 9             return 0;
10         else
11             dp[0][0] = 1;
12         // Left column
13         for (int i = 1; i < m; i++) {
14             if (obstacleGrid[i][0] == 1)
15                 dp[i][0] = 0;
16             else
17                 dp[i][0] = dp[i - 1][0];
18         }
19         // Top row
20         for (int i = 1; i < n; i++) {
21             if (obstacleGrid[0][i] == 1)
22                 dp[0][i] = 0;
23             else
24                 dp[0][i] = dp[0][i - 1];
25         }
26         // Inside
27         for (int i = 1; i < m; i++) {
28             for (int j = 1; j < n; j++) {
29                 if (obstacleGrid[i][j] == 1)
30                     dp[i][j] = 0;
31                 else
32                     dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
33             }
34         }
35         return dp[m - 1][n - 1];
36     }
37 }

 

转载于:https://www.cnblogs.com/ireneyanglan/p/4822785.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值