域,环

definition of fields

域(field)是一种代数结构(algebraic structure)。

... This may be summarized by saying: a field has two operations, the addition and the multiplication; it is an abelian group under addition, with $0$ as additive identity; the nonzero elements form an abelian group under multiplication (with $1$ as multiplicative identity), and the multiplication is distributive over addition.
SOURCE

数域

复数域的子域是为数域

例子

模2域 $\{0,1\}$,满足 $0+0=0, 0 + 1 = 1, 1+1 = 0, 0\times 0 = 0, 0 \times 1 = 0, 1 \times 1 = 1$ 。

A ring is a set $R$ equipped with two binary operations addition and multiplication satisfying the following three sets of axioms, called the ring axioms

  1. $R$ is an abelian group under addition,
  2. $R$ is a monoid(幺半群)under multiplication,
  3. Multiplication is distributive with respect to addition.

SOURCE

疑问:「整环」的英文是「integral domain」但是「环」字按理说应该跟「ring」对应,那么「domain」究竟是什么意思呢?

TO-DO:

  • Euclidean Ring

转载于:https://www.cnblogs.com/Patt/p/9141570.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值