H2O.ai初步使用

 1.官网下载最新稳定版,https://www.h2o.ai/download/ ,如果点击下载无反应,请使用ie浏览器

2.解压h2o-3.18.0.10.zip到目录h2o-3.18.0.10

3.执行命令

cd h2o-3.18.0.10
java -jar h2o.jar -name clusterName

选项参考http://docs.h2o.ai/h2o/latest-stable/h2o-docs/starting-h2o.html#h2o-options

[root@eureka-8810 h2o-3.18.0.10]# java -jar h2o.jar -name clusterName
05-29 16:49:43.010 192.168.0.80:54321    10858  main      INFO: Found XGBoost backend with library: xgboost4j_gpu
05-29 16:49:43.020 192.168.0.80:54321    10858  main      INFO: XGBoost supported backends: [WITH_GPU, WITH_OMP]
05-29 16:49:43.020 192.168.0.80:54321    10858  main      INFO: ----- H2O started  -----
05-29 16:49:43.020 192.168.0.80:54321    10858  main      INFO: Build git branch: rel-wolpert
05-29 16:49:43.020 192.168.0.80:54321    10858  main      INFO: Build git hash: b26ef10d0f1b4dd26b8227c1672ee47e0e893fec
05-29 16:49:43.020 192.168.0.80:54321    10858  main      INFO: Build git describe: jenkins-3.18.0.9-19-gb26ef10
05-29 16:49:43.021 192.168.0.80:54321    10858  main      INFO: Build age: 7 days, 8 hours and 36 minutes
05-29 16:49:43.021 192.168.0.80:54321    10858  main      INFO: Built by: 'jenkins'
05-29 16:49:43.021 192.168.0.80:54321    10858  main      INFO: Built on: '2018-05-22 08:13:35'
05-29 16:49:43.021 192.168.0.80:54321    10858  main      INFO: Watchdog Build git branch: (unknown)
05-29 16:49:43.021 192.168.0.80:54321    10858  main      INFO: Watchdog Build git hash: (unknown)
05-29 16:49:43.021 192.168.0.80:54321    10858  main      INFO: Watchdog Build git describe: (unknown)
05-29 16:49:43.021 192.168.0.80:54321    10858  main      INFO: Watchdog Build project version: (unknown)
05-29 16:49:43.021 192.168.0.80:54321    10858  main      INFO: Watchdog Built by: (unknown)
05-29 16:49:43.021 192.168.0.80:54321    10858  main      INFO: Watchdog Built on: (unknown)
05-29 16:49:43.021 192.168.0.80:54321    10858  main      INFO: XGBoost Build git branch: (unknown)
05-29 16:49:43.022 192.168.0.80:54321    10858  main      INFO: XGBoost Build git hash: (unknown)
05-29 16:49:43.022 192.168.0.80:54321    10858  main      INFO: XGBoost Build git describe: (unknown)
05-29 16:49:43.022 192.168.0.80:54321    10858  main      INFO: XGBoost Build project version: (unknown)
05-29 16:49:43.022 192.168.0.80:54321    10858  main      INFO: XGBoost Built by: (unknown)
05-29 16:49:43.022 192.168.0.80:54321    10858  main      INFO: XGBoost Built on: (unknown)
05-29 16:49:43.022 192.168.0.80:54321    10858  main      INFO: KrbStandalone Build git branch: (unknown)
05-29 16:49:43.022 192.168.0.80:54321    10858  main      INFO: KrbStandalone Build git hash: (unknown)
05-29 16:49:43.022 192.168.0.80:54321    10858  main      INFO: KrbStandalone Build git describe: (unknown)
05-29 16:49:43.022 192.168.0.80:54321    10858  main      INFO: KrbStandalone Build project version: (unknown)
05-29 16:49:43.022 192.168.0.80:54321    10858  main      INFO: KrbStandalone Built by: (unknown)
05-29 16:49:43.023 192.168.0.80:54321    10858  main      INFO: KrbStandalone Built on: (unknown)
05-29 16:49:43.023 192.168.0.80:54321    10858  main      INFO: Processed H2O arguments: [-name, clusterName]
05-29 16:49:43.023 192.168.0.80:54321    10858  main      INFO: Java availableProcessors: 16
05-29 16:49:43.023 192.168.0.80:54321    10858  main      INFO: Java heap totalMemory: 964.5 MB
05-29 16:49:43.023 192.168.0.80:54321    10858  main      INFO: Java heap maxMemory: 13.95 GB
05-29 16:49:43.023 192.168.0.80:54321    10858  main      INFO: Java version: Java 1.8.0_121 (from Oracle Corporation)
05-29 16:49:43.023 192.168.0.80:54321    10858  main      INFO: JVM launch parameters: []
05-29 16:49:43.023 192.168.0.80:54321    10858  main      INFO: OS version: Linux 3.10.0-693.el7.x86_64 (amd64)
05-29 16:49:43.023 192.168.0.80:54321    10858  main      INFO: Machine physical memory: 62.76 GB
05-29 16:49:43.023 192.168.0.80:54321    10858  main      INFO: X-h2o-cluster-id: 1527583782454
05-29 16:49:43.023 192.168.0.80:54321    10858  main      INFO: User name: 'root'
05-29 16:49:43.023 192.168.0.80:54321    10858  main      INFO: IPv6 stack selected: false
05-29 16:49:43.024 192.168.0.80:54321    10858  main      INFO: Possible IP Address: ens160 (ens160), fe80:0:0:0:df23:d65d:4aa8:62f5%ens160
05-29 16:49:43.024 192.168.0.80:54321    10858  main      INFO: Possible IP Address: ens160 (ens160), 192.168.0.80
05-29 16:49:43.024 192.168.0.80:54321    10858  main      INFO: Possible IP Address: lo (lo), 0:0:0:0:0:0:0:1%lo
05-29 16:49:43.024 192.168.0.80:54321    10858  main      INFO: Possible IP Address: lo (lo), 127.0.0.1
05-29 16:49:43.024 192.168.0.80:54321    10858  main      INFO: H2O node running in unencrypted mode.
05-29 16:49:43.026 192.168.0.80:54321    10858  main      INFO: Internal communication uses port: 54322
05-29 16:49:43.026 192.168.0.80:54321    10858  main      INFO: Listening for HTTP and REST traffic on http://192.168.0.80:54321/
05-29 16:49:43.027 192.168.0.80:54321    10858  main      INFO: H2O cloud name: 'clusterName' on /192.168.0.80:54321, static configuration based on -flatfile null
05-29 16:49:43.027 192.168.0.80:54321    10858  main      INFO: If you have trouble connecting, try SSH tunneling from your local machine (e.g., via port 55555):
05-29 16:49:43.027 192.168.0.80:54321    10858  main      INFO:   1. Open a terminal and run 'ssh -L 55555:localhost:54321 root@192.168.0.80'
05-29 16:49:43.027 192.168.0.80:54321    10858  main      INFO:   2. Point your browser to http://localhost:55555
05-29 16:49:43.735 192.168.0.80:54321    10858  main      INFO: Log dir: '/tmp/h2o-root/h2ologs'
05-29 16:49:43.736 192.168.0.80:54321    10858  main      INFO: Cur dir: '/opt/software/h2o-3.18.0.10'
05-29 16:49:43.740 192.168.0.80:54321    10858  main      INFO: HDFS subsystem successfully initialized
05-29 16:49:43.743 192.168.0.80:54321    10858  main      INFO: S3 subsystem successfully initialized
05-29 16:49:43.743 192.168.0.80:54321    10858  main      INFO: Flow dir: '/root/h2oflows'
05-29 16:49:43.757 192.168.0.80:54321    10858  main      INFO: Cloud of size 1 formed [/192.168.0.80:54321]
05-29 16:49:43.770 192.168.0.80:54321    10858  main      INFO: Registered parsers: [GUESS, ARFF, XLS, SVMLight, AVRO, PARQUET, CSV]
05-29 16:49:43.770 192.168.0.80:54321    10858  main      INFO: Watchdog extension initialized
05-29 16:49:43.770 192.168.0.80:54321    10858  main      INFO: XGBoost extension initialized
05-29 16:49:43.770 192.168.0.80:54321    10858  main      INFO: KrbStandalone extension initialized
05-29 16:49:43.770 192.168.0.80:54321    10858  main      INFO: Registered 3 core extensions in: 256ms
05-29 16:49:43.770 192.168.0.80:54321    10858  main      INFO: Registered H2O core extensions: [Watchdog, XGBoost, KrbStandalone]
05-29 16:49:44.035 192.168.0.80:54321    10858  main      INFO: Registered: 165 REST APIs in: 264ms
05-29 16:49:44.035 192.168.0.80:54321    10858  main      INFO: Registered REST API extensions: [XGBoost, Algos, AutoML, Core V3, Core V4]
05-29 16:49:44.149 192.168.0.80:54321    10858  main      INFO: Registered: 235 schemas in 113ms
05-29 16:49:44.150 192.168.0.80:54321    10858  main      INFO: H2O started in 1691ms
05-29 16:49:44.150 192.168.0.80:54321    10858  main      INFO: 
05-29 16:49:44.150 192.168.0.80:54321    10858  main      INFO: Open H2O Flow in your web browser: http://192.168.0.80:54321
05-29 16:49:44.150 192.168.0.80:54321    10858  main      INFO:
View Code

4.找另一台机器或者重新打开一个shell命令窗口,再次输入命令

java -jar h2o.jar -name clusterName

会自动根据-name选项查找存在的集群

05-29 16:45:22.648 192.168.0.166:54323   10408  main      INFO: Found XGBoost backend with library: xgboost4j_gpu
05-29 16:45:22.661 192.168.0.166:54323   10408  main      INFO: XGBoost supported backends: [WITH_GPU, WITH_OMP]
05-29 16:45:22.661 192.168.0.166:54323   10408  main      INFO: ----- H2O started  -----
05-29 16:45:22.661 192.168.0.166:54323   10408  main      INFO: Build git branch: rel-wolpert
05-29 16:45:22.661 192.168.0.166:54323   10408  main      INFO: Build git hash: b26ef10d0f1b4dd26b8227c1672ee47e0e893fec
05-29 16:45:22.661 192.168.0.166:54323   10408  main      INFO: Build git describe: jenkins-3.18.0.9-19-gb26ef10
05-29 16:45:22.661 192.168.0.166:54323   10408  main      INFO: Build age: 7 days, 8 hours and 31 minutes
05-29 16:45:22.661 192.168.0.166:54323   10408  main      INFO: Built by: 'jenkins'
05-29 16:45:22.662 192.168.0.166:54323   10408  main      INFO: Built on: '2018-05-22 08:13:35'
05-29 16:45:22.662 192.168.0.166:54323   10408  main      INFO: Watchdog Build git branch: (unknown)
05-29 16:45:22.662 192.168.0.166:54323   10408  main      INFO: Watchdog Build git hash: (unknown)
05-29 16:45:22.662 192.168.0.166:54323   10408  main      INFO: Watchdog Build git describe: (unknown)
05-29 16:45:22.662 192.168.0.166:54323   10408  main      INFO: Watchdog Build project version: (unknown)
05-29 16:45:22.662 192.168.0.166:54323   10408  main      INFO: Watchdog Built by: (unknown)
05-29 16:45:22.662 192.168.0.166:54323   10408  main      INFO: Watchdog Built on: (unknown)
05-29 16:45:22.662 192.168.0.166:54323   10408  main      INFO: XGBoost Build git branch: (unknown)
05-29 16:45:22.662 192.168.0.166:54323   10408  main      INFO: XGBoost Build git hash: (unknown)
05-29 16:45:22.663 192.168.0.166:54323   10408  main      INFO: XGBoost Build git describe: (unknown)
05-29 16:45:22.663 192.168.0.166:54323   10408  main      INFO: XGBoost Build project version: (unknown)
05-29 16:45:22.663 192.168.0.166:54323   10408  main      INFO: XGBoost Built by: (unknown)
05-29 16:45:22.663 192.168.0.166:54323   10408  main      INFO: XGBoost Built on: (unknown)
05-29 16:45:22.663 192.168.0.166:54323   10408  main      INFO: KrbStandalone Build git branch: (unknown)
05-29 16:45:22.663 192.168.0.166:54323   10408  main      INFO: KrbStandalone Build git hash: (unknown)
05-29 16:45:22.663 192.168.0.166:54323   10408  main      INFO: KrbStandalone Build git describe: (unknown)
05-29 16:45:22.663 192.168.0.166:54323   10408  main      INFO: KrbStandalone Build project version: (unknown)
05-29 16:45:22.663 192.168.0.166:54323   10408  main      INFO: KrbStandalone Built by: (unknown)
05-29 16:45:22.664 192.168.0.166:54323   10408  main      INFO: KrbStandalone Built on: (unknown)
05-29 16:45:22.664 192.168.0.166:54323   10408  main      INFO: Processed H2O arguments: [-name, clusterName]
05-29 16:45:22.664 192.168.0.166:54323   10408  main      INFO: Java availableProcessors: 4
05-29 16:45:22.664 192.168.0.166:54323   10408  main      INFO: Java heap totalMemory: 88.5 MB
05-29 16:45:22.664 192.168.0.166:54323   10408  main      INFO: Java heap maxMemory: 1.27 GB
05-29 16:45:22.664 192.168.0.166:54323   10408  main      INFO: Java version: Java 1.8.0_77 (from Oracle Corporation)
05-29 16:45:22.664 192.168.0.166:54323   10408  main      INFO: JVM launch parameters: []
05-29 16:45:22.664 192.168.0.166:54323   10408  main      INFO: OS version: Linux 2.6.32-431.el6.x86_64 (amd64)
05-29 16:45:22.664 192.168.0.166:54323   10408  main      INFO: Machine physical memory: 5.72 GB
05-29 16:45:22.665 192.168.0.166:54323   10408  main      INFO: X-h2o-cluster-id: 1527583522016
05-29 16:45:22.665 192.168.0.166:54323   10408  main      INFO: User name: 'root'
05-29 16:45:22.665 192.168.0.166:54323   10408  main      INFO: IPv6 stack selected: false
05-29 16:45:22.665 192.168.0.166:54323   10408  main      INFO: Possible IP Address: eth1 (eth1), fe80:0:0:0:20c:29ff:fe29:d906%eth1
05-29 16:45:22.665 192.168.0.166:54323   10408  main      INFO: Possible IP Address: eth1 (eth1), 192.168.0.166
05-29 16:45:22.665 192.168.0.166:54323   10408  main      INFO: Possible IP Address: lo (lo), 0:0:0:0:0:0:0:1%lo
05-29 16:45:22.665 192.168.0.166:54323   10408  main      INFO: Possible IP Address: lo (lo), 127.0.0.1
05-29 16:45:22.665 192.168.0.166:54323   10408  main      INFO: H2O node running in unencrypted mode.
05-29 16:45:22.668 192.168.0.166:54323   10408  main      INFO: Internal communication uses port: 54324
05-29 16:45:22.668 192.168.0.166:54323   10408  main      INFO: Listening for HTTP and REST traffic on http://192.168.0.166:54323/
05-29 16:45:22.669 192.168.0.166:54323   10408  main      INFO: H2O cloud name: 'clusterName' on /192.168.0.166:54323, static configuration based on -flatfile null
05-29 16:45:22.669 192.168.0.166:54323   10408  main      INFO: If you have trouble connecting, try SSH tunneling from your local machine (e.g., via port 55555):
05-29 16:45:22.669 192.168.0.166:54323   10408  main      INFO:   1. Open a terminal and run 'ssh -L 55555:localhost:54323 root@192.168.0.166'
05-29 16:45:22.669 192.168.0.166:54323   10408  main      INFO:   2. Point your browser to http://localhost:55555
05-29 16:45:23.457 192.168.0.166:54323   10408  main      INFO: Log dir: '/tmp/h2o-root/h2ologs'
05-29 16:45:23.458 192.168.0.166:54323   10408  main      INFO: Cur dir: '/opt/software'
05-29 16:45:23.462 192.168.0.166:54323   10408  main      INFO: HDFS subsystem successfully initialized
05-29 16:45:23.466 192.168.0.166:54323   10408  main      INFO: S3 subsystem successfully initialized
05-29 16:45:23.466 192.168.0.166:54323   10408  main      INFO: Flow dir: '/root/h2oflows'
05-29 16:45:23.481 192.168.0.166:54323   10408  main      INFO: Cloud of size 1 formed [/192.168.0.166:54323]
05-29 16:45:23.518 192.168.0.166:54323   10408  main      INFO: Registered parsers: [GUESS, ARFF, XLS, SVMLight, AVRO, PARQUET, CSV]
05-29 16:45:23.519 192.168.0.166:54323   10408  main      INFO: Watchdog extension initialized
05-29 16:45:23.519 192.168.0.166:54323   10408  main      INFO: XGBoost extension initialized
05-29 16:45:23.519 192.168.0.166:54323   10408  main      INFO: KrbStandalone extension initialized
05-29 16:45:23.519 192.168.0.166:54323   10408  main      INFO: Registered 3 core extensions in: 269ms
05-29 16:45:23.519 192.168.0.166:54323   10408  main      INFO: Registered H2O core extensions: [Watchdog, XGBoost, KrbStandalone]
05-29 16:45:23.972 192.168.0.166:54323   10408  main      INFO: Registered: 165 REST APIs in: 452ms
05-29 16:45:23.980 192.168.0.166:54323   10408  main      INFO: Registered REST API extensions: [XGBoost, Algos, AutoML, Core V3, Core V4]
05-29 16:45:24.391 192.168.0.166:54323   10408  main      INFO: Registered: 235 schemas in 410ms
05-29 16:45:24.391 192.168.0.166:54323   10408  main      INFO: H2O started in 2369ms
05-29 16:45:24.391 192.168.0.166:54323   10408  main      INFO: 
05-29 16:45:24.400 192.168.0.166:54323   10408  main      INFO: Open H2O Flow in your web browser: http://192.168.0.166:54323
05-29 16:45:24.400 192.168.0.166:54323   10408  main      INFO: 
05-29 16:45:26.961 192.168.0.166:54323   10408  FJ-126-7  INFO: Cloud of size 2 formed [/192.168.0.80:54321, /192.168.0.166:54323]
View Code

5. 打开浏览器,输入网址

http://192.168.0.166:54323
会看到h2o的flow ui界面

 

6. 页面使用

6.1数据导入
选择左侧帮助部分的导入数据,importFiles

 

  页面下方会显示出导入数据的界面,在search文本框上输入服务器上文件的路径,点击右侧的搜索按钮,页面会列出所有查到到的文件。然后点击Add all,没问题后点击import按钮

 

6.2 导入本地客户端数据

   如果服务器上不存在要分析的文件,你可以选择上传自己的文件

 

 

 6.3 解析导入的数据

  如果你页面刷新了或者页面数据太乱了,你可以在getFrames里找到你刚才导入的数据集

找到我们刚才导入的数据集,点击parse按钮,

 

 

你可以自己输入列名,选择数据类型及其他修改,最后点击parse完成数据集的格式处理

 

点击上图中的view按钮,会显示下图,然后点击下图中的view data,会进行数据预览

  数据预览查看:

  parse完数据之后,你会发现数据集的扩展名已经由我们的.csv转为.hex,刷新一下页面,点击getFrames,

 6.4 拆分数据集,

  点击进入数据集,点击split按钮,

选择输入拆分比例,会拆分成多个数据集

 

 

    6.5创建模型

点击顶菜单的'model --  k-meas'

选择算法,这里选择k-means,输入训练集training_frame和验证集validation_frame,或调整其他参数。

 

 

 点击底部的create model按钮,会生成一个job,

点击view按钮,可查看模型的详细情况,如下图。

点击预测predict按钮,会显示下图,选择要预测的数据集,点击预测按钮即可查看结果。

 

 

 

 


转载于:https://www.cnblogs.com/RexSheng/p/9105859.html

<think>我们正在讨论H2O.ai的核心技术。根据引用[1]和[3],H2O.ai以开源软件为核心,提供覆盖数据处理、模型训练到部署的全流程解决方案。其开源框架H2O可以与现有的大数据基础设施(如Hadoop、Spark和Kubernetes集群)配合使用,并支持从多种数据源(如HDFS、Spark、S3、Azure Data Lake)摄取数据。 H2O.ai的核心技术包括: 1. **分布式内存计算引擎**:H2O的核心是一个基于内存的分布式键值存储系统,能够高效处理大规模数据集。 2. **机器学习算法库**:H2O提供了丰富的机器学习算法,包括广义线性模型(GLM)、梯度提升机(GBM)、随机森林(RF)、深度学习(Deep Learning)等。 3. **自动机器学习(AutoML)**:H2O的AutoML功能可以自动训练和调整多个模型,并选择最佳模型。 4. **可扩展性**:H2O可以运行在单机、集群(包括Hadoop、Spark、Kubernetes)上,支持水平扩展。 5. **与大数据生态集成**:H2O可以与Hadoop、Spark等大数据技术无缝集成,支持从多种数据源读取数据。 此外,引用[2]提到H2O.ai需要不断创新技术以保持竞争力,因此他们也在持续研发新技术,如增强对深度学习的支持、改进模型解释性等。 下面我将详细解释这些核心技术,并提供一些代码示例(使用H2O的Python接口)来展示其用法。 ### 1. 分布式内存计算引擎 H2O的核心是一个分布式内存计算引擎,它将数据分布到集群的多个节点上,并在内存中进行计算,从而加速数据处理和模型训练。这种架构使得H2O能够处理比单机内存更大的数据集。 ### 2. 机器学习算法库 H2O提供了多种机器学习算法的实现。以下是一个使用H2O训练广义线性模型(GLM)的示例: ```python import h2o from h2o.estimators.glm import H2OGeneralizedLinearEstimator # 初始化H2O集群 h2o.init() # 导入数据集 data = h2o.import_file("https://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_wheader.csv") # 划分数据集 train, test = data.split_frame(ratios=[0.8], seed=42) # 定义特征和响应变量 features = data.columns[:-1] # 前四列是特征 response = data.columns[-1] # 最后一列是响应变量(类别) # 创建GLM模型 glm_model = H2OGeneralizedLinearEstimator(family="multinomial", lambda_=0, compute_p_values=True) glm_model.train(x=features, y=response, training_frame=train) # 评估模型 performance = glm_model.model_performance(test) print(performance) ``` ### 3. 自动机器学习(AutoML) H2O的AutoML可以自动进行模型训练和调优。以下是一个使用AutoML的示例: ```python import h2o from h2o.automl import H2OAutoML h2o.init() # 导入数据集 data = h2o.import_file("https://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_wheader.csv") # 划分数据集 train, test = data.split_frame(ratios=[0.8], seed=42) features = data.columns[:-1] response = data.columns[-1] # 初始化AutoML aml = H2OAutoML(max_models=20, seed=1, max_runtime_secs=300) aml.train(x=features, y=response, training_frame=train) # 查看AutoML的排名 lb = aml.leaderboard print(lb.head()) # 使用最佳模型进行预测 preds = aml.leader.predict(test) print(preds) ``` ### 4. 可扩展性 H2O可以运行在多种集群环境中。例如,在Spark集群上运行H2O(通过Sparkling Water): ```python from pysparkling import * import h2o # 初始化SparkContext sc = H2OContext.getOrCreate(spark) # 然后就可以使用H2O的API ``` ### 5. 与大数据生态集成 H2O支持从多种数据源读取数据,例如: ```python # 从HDFS读取数据 data = h2o.import_file("hdfs://path/to/data.csv") # 从S3读取数据 data = h2o.import_file("s3://bucket-name/data.csv") ``` 总结:H2O.ai的核心技术包括分布式内存计算引擎、丰富的机器学习算法库、AutoML、可扩展性以及与大数据生态的集成。这些技术使得H2O.ai能够高效地处理大规模数据并构建机器学习模型。 §§相关问题§§ 1. H2O.ai的分布式内存计算引擎是如何工作的? 2. H2O.ai支持哪些机器学习算法? 3. H2O的AutoML功能有哪些特点? 4. 如何在Spark集群上使用H2O(Sparkling Water)? 5. H2O.ai在模型部署方面有哪些解决方案?</think>### H2O.ai 核心技术解析 H2O.ai 的核心技术架构围绕开源机器学习平台构建,主要包括以下核心技术组件: #### 1. **分布式内存计算引擎** - **核心机制**:采用分布式键值存储系统,数据以列式压缩格式存储在集群内存中,支持$O(1)$时间复杂度的数据访问 - **并行计算**:通过`MapReduce`范式实现并行化,算法自动分割数据到集群节点,例如梯度计算公式: $$\nabla J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)})x^{(i)}$$ 在分布式环境中被分解为局部梯度求和[^3] #### 2. **算法库实现** | 算法类别 | 代表算法 | 技术特点 | |----------------|-----------------------------|----------------------------------| | 树模型 | GBM, XGBoost, Random Forest | 基于直方图优化的分裂点查找算法 | | 线性模型 | GLM, GAM | 分布式坐标下降优化 | | 深度学习 | Deep Water | GPU加速的自动微分架构 | | 自动机器学习 | H2O AutoML | 多模型堆叠集成技术 | #### 3. **自动机器学习 (AutoML)** ```python # H2O AutoML 示例代码 import h2o from h2o.automl import H2OAutoML h2o.init() data = h2o.import_file("dataset.csv") aml = H2OAutoML(max_models=20, seed=1) aml.train(y="target", training_frame=data) lb = aml.leaderboard # 自动生成模型排行榜 ``` - 自动完成特征工程、超参优化和模型选择 - 支持`Stacked Ensembles`集成技术提升预测精度[^1] #### 4. **可扩展架构** - **跨平台集成**: - 大数据平台:Hadoop/YARN, Spark, Kubernetes - 云平台:AWS S3, Azure Data Lake, GCP - **部署方案**: $$ \text{模型} \xrightarrow{\text{POJO/MOJO}} \text{REST API} \xrightarrow{\text{实时预测}} $$ 通过生成`MOJO`(Model Optimized Java Object)实现亚毫秒级预测延迟[^3] #### 5. **模型解释技术** - 使用`SHAP`(SHapley Additive exPlanations)值: $$\phi_i = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|!(|N|-|S|-1)!}{|N|!}[f(S \cup \{i\}) - f(S)]$$ - 提供特征重要性、部分依赖图等可视化工具 #### 6. **流式数据处理** - 基于`Apache Kafka`集成 - 增量学习算法支持: $$\theta_{t+1} = \theta_t - \eta \nabla J(\theta_t; x_{t})$$ 实现模型参数的在线更新[^1] ### 技术优势对比 | 特性 | H2O.ai | 传统框架 | |---------------------|--------------------|--------------------| | 数据规模 | PB级 | TB级 | | 预测延迟 | <1ms (MOJO) | 100ms+ | | 自动特征工程 | 内置 | 需手动实现 | | 模型部署 | 单文件MOJO | 复杂环境依赖 | 这些核心技术使H2O.ai能在金融风控、医疗诊断等场景实现高精度实时预测,同时保持开源灵活性[^1][^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值