DataFrame.groupby()函数

本文详细介绍了使用Python的Pandas库进行数据处理的方法,包括如何用二维列表构造原始数据,将数据转换为DataFrame类型,以及如何进行数据索引、创建新列和分组汇总等高级操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 用二维列表构造原始数据
1 import pandas as pd
2 
3 data = [['li', 'math', 100], ['bob', 'pe', 99], ['sar', 'english', 98], ['li', 'pe', 89]]
  • 将数据转换成DataFrame类型
1 import pandas as pd
2 
3 dataFrame = pd.DataFrame(dada, columns = ['name', 'course', 'score']) # columns 为列名 并且必须是list类型
  • 打印dataFrame对象

  • 此时不能根据行号索引,但是可以根据列名索引
1 import pandas as pd
2 
3 print(dataFrame[0])

1 import pandas as pd
2 
3 print(dataFrame["name"]) 

  • 此时的dataFrame["name"] 是一个类似于一维数组的series对象,可根据下标索引
1 import pandas as pd
2 
3 print(dataFrame["name"])
4 print(type(dataFrame["name"]))
5 print(dataFrame["name"][0])

 

  • 像字典一样用索引创建新列 dataFrame["age"]
1 import pandas as pd
2 
3 dataFrame["age"] = [23, 24, 25, 23]
4 print(dataFrame)

 

  • 重点来了,dataFrame.groupby("name")根据name属性分组,name列数据项默认成为索引
1 import pandas as pd
2 
3 dataFrame = dataFrame.groupby(["name", "course"])["score"].sum() # 可以通过as_index指定分组项要不要成为索引, 默认为True
4 print(dataFrame)
5 print(dataFrame["li"])

 

 

转载于:https://www.cnblogs.com/yangwu-183/p/9992928.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值