[LintCode] Intersection of Two Arrays II 两个数组相交之二

本文介绍了解决数组交集问题的两种方法。一种使用哈希表进行元素计数匹配,适用于元素重复的情况;另一种则针对已排序数组,通过双指针技巧找到交集元素。这两种方法各有优势,可根据输入数组的特点选择合适的算法。

 

Given two arrays, write a function to compute their intersection.
Notice

    Each element in the result should appear as many times as it shows in both arrays.
    The result can be in any order.

Example

Given nums1 = [1, 2, 2, 1], nums2 = [2, 2], return [2, 2].
Challenge

    What if the given array is already sorted? How would you optimize your algorithm?
    What if nums1's size is small compared to num2's size? Which algorithm is better?
    What if elements of nums2 are stored on disk, and the memory is limited such that you cannot load all elements into the memory at once?

 

LeetCode上的原题,请参见我之前的博客Intersection of Two Arrays II

 

解法一:

class Solution {
public:
    /**
     * @param nums1 an integer array
     * @param nums2 an integer array
     * @return an integer array
     */
    vector<int> intersection(vector<int>& nums1, vector<int>& nums2) {
        vector<int> res;
        unordered_map<int, int> m;
        for (auto a : nums1) ++m[a];
        for (auto a : nums2) {
            if (m[a] > 0) {
                res.push_back(a);
                --m[a];
            }
        }
        return res;
    }
};

 

解法二:

class Solution {
public:
    /**
     * @param nums1 an integer array
     * @param nums2 an integer array
     * @return an integer array
     */
    vector<int> intersection(vector<int>& nums1, vector<int>& nums2) {
        vector<int> res;
        int i = 0, j = 0;
        sort(nums1.begin(), nums1.end());
        sort(nums2.begin(), nums2.end());
        while (i < nums1.size() && j < nums2.size()) {
            if (nums1[i] < nums2[j]) ++i;
            else if (nums1[i] > nums2[j]) ++j;
            else {
                res.push_back(nums1[i]);
                ++i; ++j;
            }
        }
        return res;
    }
};

 

转载于:https://www.cnblogs.com/grandyang/p/5571674.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值