HDU1217 (Floyd简单变形)

套汇问题与Floyd算法变形
本文讨论了套汇问题及其解决方案,通过使用Floyd算法变形来确定是否存在套汇机会。介绍了输入输出格式和样例,展示了如何通过编程实现这一算法。

Arbitrage

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5794    Accepted Submission(s): 2683

Problem Description
Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of a currency into more than one unit of the same currency. For example, suppose that 1 US Dollar buys 0.5 British pound, 1 British pound buys 10.0 French francs, and 1 French franc buys 0.21 US dollar. Then, by converting currencies, a clever trader can start with 1 US dollar and buy 0.5 * 10.0 * 0.21 = 1.05 US dollars, making a profit of 5 percent. 

Your job is to write a program that takes a list of currency exchange rates as input and then determines whether arbitrage is possible or not.
 
Input
The input file will contain one or more test cases. Om the first line of each test case there is an integer n (1<=n<=30), representing the number of different currencies. The next n lines each contain the name of one currency. Within a name no spaces will appear. The next line contains one integer m, representing the length of the table to follow. The last m lines each contain the name ci of a source currency, a real number rij which represents the exchange rate from ci to cj and a name cj of the destination currency. Exchanges which do not appear in the table are impossible.
Test cases are separated from each other by a blank line. Input is terminated by a value of zero (0) for n. 
 
Output
For each test case, print one line telling whether arbitrage is possible or not in the format "Case case: Yes" respectively "Case case: No". 
 
Sample Input
3
USDollar
BritishPound
FrenchFranc
3
USDollar 0.5 BritishPound
BritishPound 10.0 FrenchFranc
FrenchFranc 0.21 USDollar
 
 
3
USDollar
BritishPound
FrenchFranc
6
USDollar 0.5 BritishPound
USDollar 4.9 FrenchFranc
BritishPound 10.0 FrenchFranc
BritishPound 1.99 USDollar
FrenchFranc 0.09 BritishPound
FrenchFranc 0.19 USDollar 0
 
Sample Output
Case 1: Yes
Case 2: No
 
Source
 
套汇问题,floyd变形
 
/*
ID: LinKArftc
PROG: 1217.cpp
LANG: C++
*/

#include <map>
#include <set>
#include <cmath>
#include <stack>
#include <queue>
#include <vector>
#include <cstdio>
#include <string>
#include <utility>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define eps 1e-8
#define randin srand((unsigned int)time(NULL))
#define input freopen("input.txt","r",stdin)
#define debug(s) cout << "s = " << s << endl;
#define outstars cout << "*************" << endl;
const double PI = acos(-1.0);
const double e = exp(1.0);
const int inf = 0x3f3f3f3f;
const int INF = 0x7fffffff;
typedef long long ll;

const int maxn = 50;
int n, m;
double table[maxn][maxn];

void floyd() {
    for (int k = 1; k <= n; k ++) {
        for (int i = 1; i <= n; i ++) {
            for (int j = 1; j <= n; j ++) {
                table[i][j] = max(table[i][j], table[i][k] * table[k][j]);
            }
        }
    }
}

int main() {
    //input;
    int _t = 1;
    while (~scanf("%d", &n) && n) {
        map <string, int> mp;
        string str, str1;
        int cnt = 1;
        for (int i = 1; i <= n; i ++) {
            cin >> str;
            mp[str] = cnt ++;
        }
        memset(table, 0, sizeof(table));
        scanf("%d", &m);
        double change;
        for (int i = 1; i <= m; i ++) {
            cin >> str >> change >> str1;
            table[mp[str]][mp[str1]] = change;
        }
        floyd();
        bool flag = false;
        for (int i = 1; i <= n; i ++) {
            if (table[i][i] - 1.0 > eps) {
                flag = true;
                break;
            }
        }
        if (flag) printf("Case %d: Yes\n", _t ++);
        else printf("Case %d: No\n", _t ++);
    }

    return 0;
}

 

转载于:https://www.cnblogs.com/LinKArftc/p/4904486.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值