1.3.4 Combination Lock

本文探讨了如何通过计算组合锁的多种开启设置,解决FarmJohn的牛逃逸问题,涉及数学逻辑与算法应用。

Farmer John's cows keep escaping from his farm and causing mischief. To try and prevent them from leaving, he purchases a fancy combination lock to keep his cows from opening the pasture gate.

Knowing that his cows are quite clever, Farmer John wants to make sure they cannot easily open the lock by simply trying many different combinations. The lock has three dials, each numbered 1..N (1 <= N <= 100), where 1 and N are adjacent since the dials are circular. There are two combinations that open the lock, one set by Farmer John, and also a "master" combination set by the lock maker.

The lock has a small tolerance for error, however, so it will open even if the numbers on the dials are each within at most 2 positions of a valid combination.

For example, if Farmer John's combination is (1,2,3) and the master combination is (4,5,6), the lock will open if its dials are set to (1,3,5) (since this is close enough to Farmer John's combination) or to (2,4,8) (since this is close enough to the master combination). Note that (1,5,6) would not open the lock, since it is not close enough to any one single combination.

Given Farmer John's combination and the master combination, please determine the number of distinct settings for the dials that will open the lock. Order matters, so the setting (1,2,3) is distinct from (3,2,1).

PROGRAM NAME: combo

INPUT FORMAT:

Line 1:

The integer N.

 

Line 2:

Three space-separated integers, specifying Farmer John's combination.

Line 3:

Three space-separated integers, specifying the master combination (possibly the same as Farmer John's combination).

SAMPLE INPUT (file combo.in):

50

1 2 3

5 6 7

INPUT DETAILS:

Each dial is numbered 1..50. Farmer John's combination is (1,2,3), and the master combination is (5,6,7).

OUTPUT FORMAT:

Line 1:

The number of distinct dial settings that will open the lock.

SAMPLE OUTPUT (file combo.out):

249

SAMPLE OUTPUT EXPLANATION

Here's a list:

1,1,1  2,2,4  3,4,2  4,4,5  5,4,8  6,5,6  7,5,9  3,50,2  50,1,4 

1,1,2  2,2,5  3,4,3  4,4,6  5,4,9  6,5,7  7,6,5  3,50,3  50,1,5 

1,1,3  2,3,1  3,4,4  4,4,7  5,5,5  6,5,8  7,6,6  3,50,4  50,2,1 

1,1,4  2,3,2  3,4,5  4,4,8  5,5,6  6,5,9  7,6,7  3,50,5  50,2,2 

1,1,5  2,3,3  3,4,6  4,4,9  5,5,7  6,6,5  7,6,8  49,1,1  50,2,3 

1,2,1  2,3,4  3,4,7  4,5,5  5,5,8  6,6,6  7,6,9  49,1,2  50,2,4 

1,2,2  2,3,5  3,4,8  4,5,6  5,5,9  6,6,7  7,7,5  49,1,3  50,2,5 

1,2,3  2,4,1  3,4,9  4,5,7  5,6,5  6,6,8  7,7,6  49,1,4  50,3,1 

1,2,4  2,4,2  3,5,5  4,5,8  5,6,6  6,6,9  7,7,7  49,1,5  50,3,2 

1,2,5  2,4,3  3,5,6  4,5,9  5,6,7  6,7,5  7,7,8  49,2,1  50,3,3 

1,3,1  2,4,4  3,5,7  4,6,5  5,6,8  6,7,6  7,7,9  49,2,2  50,3,4 

1,3,2  2,4,5  3,5,8  4,6,6  5,6,9  6,7,7  7,8,5  49,2,3  50,3,5 

1,3,3  3,1,1  3,5,9  4,6,7  5,7,5  6,7,8  7,8,6  49,2,4  50,4,1 

1,3,4  3,1,2  3,6,5  4,6,8  5,7,6  6,7,9  7,8,7  49,2,5  50,4,2 

1,3,5  3,1,3  3,6,6  4,6,9  5,7,7  6,8,5  7,8,8  49,3,1  50,4,3 

1,4,1  3,1,4  3,6,7  4,7,5  5,7,8  6,8,6  7,8,9  49,3,2  50,4,4 

1,4,2  3,1,5  3,6,8  4,7,6  5,7,9  6,8,7  1,50,1 49,3,3  50,4,5 

1,4,3  3,2,1  3,6,9  4,7,7  5,8,5  6,8,8  1,50,2 49,3,4  49,50,1

1,4,4  3,2,2  3,7,5  4,7,8  5,8,6  6,8,9  1,50,3 49,3,5  49,50,2

1,4,5  3,2,3  3,7,6  4,7,9  5,8,7  7,4,5  1,50,4 49,4,1  49,50,3

2,1,1  3,2,4  3,7,7  4,8,5  5,8,8  7,4,6  1,50,5 49,4,2  49,50,4

2,1,2  3,2,5  3,7,8  4,8,6  5,8,9  7,4,7  2,50,1 49,4,3  49,50,5

2,1,3  3,3,1  3,7,9  4,8,7  6,4,5  7,4,8  2,50,2 49,4,4  50,50,1

2,1,4  3,3,2  3,8,5  4,8,8  6,4,6  7,4,9  2,50,3 49,4,5  50,50,2

2,1,5  3,3,3  3,8,6  4,8,9  6,4,7  7,5,5  2,50,4 50,1,1  50,50,3

2,2,1  3,3,4  3,8,7  5,4,5  6,4,8  7,5,6  2,50,5 50,1,2  50,50,4

2,2,2  3,3,5  3,8,8  5,4,6  6,4,9  7,5,7  3,50,1 50,1,3  50,50,5

2,2,3  3,4,1  3,8,9  5,4,7  6,5,5  7,5,8

 

代码:

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <cmath>
 5 #include <algorithm>
 6 using namespace std;
 7 bool num[111][111][111];
 8 int t;
 9 int d1[3],d2[3];
10 int check(int n,int m)
11 {    
12     if(abs(m-n)<=2) return 1;
13     if(abs(m-n)>=t-2) return 1;
14     return 0;
15 }
16 int main()
17 {
18     freopen("combo.in","r",stdin);
19     freopen("combo.out","w",stdout);
20     int cnt=0;
21     cin>>t;
22     memset(num,false,sizeof(num));
23     for(int i=0;i<3;i++) cin>>d1[i];
24     for(int i=0;i<3;i++) cin>>d2[i];
25     for(int i=1;i<=t;i++){
26         for(int j=1;j<=t;j++){
27             for(int k=1;k<=t;k++){
28                 if(num[i][j][k]==false){
29                     if((check(i,d1[0])&&check(j,d1[1])&&check(k,d1[2]))||(check(i,d2[0])&&check(j,d2[1])&&check(k,d2[2])))
30                         cnt++;
31                     num[i][j][k]=true;
32                 }
33             }
34         }
35     }
36     cout<<cnt<<endl;
37     return 0;
38 }

 

转载于:https://www.cnblogs.com/shenyw/p/5156473.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值