Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most two transactions.
Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
想不出来,网上搜了一个算法,从头算一遍。然后在从尾算一遍当前最大值,然后从不同的i切割。前后加起来最大的情况。另外还看到了一个求最大k次交易的一个通用算法,是依据一篇论文写出来的,看来学术确实能用到寻常的编程里来,事实上想想如今的二分查找等算法不都是曾经的论文么。
Design an algorithm to find the maximum profit. You may complete at most two transactions.
Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
想不出来,网上搜了一个算法,从头算一遍。然后在从尾算一遍当前最大值,然后从不同的i切割。前后加起来最大的情况。另外还看到了一个求最大k次交易的一个通用算法,是依据一篇论文写出来的,看来学术确实能用到寻常的编程里来,事实上想想如今的二分查找等算法不都是曾经的论文么。
int maxProfitIII(vector<int> &prices)
{
int len = prices.size();
if (len == 0) return 0;
vector<int> history(len, 0);
vector<int> future(len, 0);
int low = prices[0];
for (int i = 1; i < len; i++)
{
history[i] = max(history[i-1], prices[i] - low);
low = min(low, prices[i]);
}
int high = prices[len-1];
for (int i = len-2; i >= 0; i--)
{
future[i] = max(future[i+1], high - prices[i]);
high = max(high, prices[i]);
}
int maxProfit = 0; // 网上说第一次的卖和第二次的买能够在同一次。所以直接都是i相加就能够了
for (int i = 0; i < len; i++)
{
maxProfit = max(maxProfit, history[i] + future[i]);
}
return maxProfit;
}