显然转化为求不包含关键点的矩形个数。考虑暴力,枚举矩形下边界,求出该行每个位置对应的最低障碍点高度,对其建笛卡尔树,答案即为Σhi*(slson+1)*(srson+1),即考虑跨过该位置的矩形个数。
笛卡尔树就是treap,于是考虑利用treap将其动态维护,将hi设为treap的优先级。移动下边界,可以发现每次相当于将所有点的优先级+1,并对该行出现的关键点将对应位置的优先级设为0,打打标记瞎维护下即可。由于数据随机复杂度很对。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
#define lson tree[k].ch[0]
#define rson tree[k].ch[1]
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,r,c,root,cnt;
ll ans;
struct data
{
int x,y;
bool operator <(const data&a) const
{
return x<a.x;
}
}a[N];
struct data2{int ch[2],x,p,s,lazy;ll ans;
}tree[N<<1];
void up(int k)
{
tree[k].s=tree[lson].s+tree[rson].s+1;
tree[k].ans=tree[lson].ans+tree[rson].ans+1ll*tree[k].p*(tree[lson].s+1)*(tree[rson].s+1);
}
void move(int &k,int p)
{
int t=tree[k].ch[p];
tree[k].ch[p]=tree[t].ch[!p],tree[t].ch[!p]=k,up(k),up(t),k=t;
}
void build(int &k,int l,int r)
{
if (l>r) return;
k=++cnt;
int mid=l+r>>1;
tree[k].x=mid,tree[k].p=0;
build(lson,l,mid-1);
build(rson,mid+1,r);
up(k);
}
void update(int k,int x)
{
tree[k].lazy+=x;
tree[k].p+=x;
tree[k].ans+=1ll*x*tree[k].s*(tree[k].s+1)/2;
}
void down(int k)
{
update(lson,tree[k].lazy);
update(rson,tree[k].lazy);
tree[k].lazy=0;
}
void modify(int &k,int x)
{
down(k);
if (tree[k].x==x) tree[k].p=0;
else if (tree[k].x<x) modify(rson,x),move(k,1);
else modify(lson,x),move(k,0);
up(k);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2658.in","r",stdin);
freopen("bzoj2658.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
r=read(),c=read(),n=read();
for (int i=1;i<=n;i++) a[i].x=read(),a[i].y=read();
ans=1ll*r*(r+1)*c*(c+1)/4;
sort(a+1,a+n+1);
build(root,1,c);
int x=0;
for (int i=1;i<=r;i++)
{
update(root,1);
while (a[x+1].x==i)
{
x++;
modify(root,a[x].y);
}
ans-=tree[root].ans;
}
cout<<ans;
return 0;
}
//ans=Σpi*(sl+1)*(sr+1)