Coarse-Grained lock 粗粒度锁

本文探讨了在并发控制中采用粗粒度锁机制的方法,包括如何为一组相关对象设置共享锁,以此简化锁定操作并减少锁竞争。同时介绍了隐含锁的概念及其实现方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 用一个锁Lock一组相关的对象
    • 有时,需要按组来修改多个对象.
    • 这样,在需要锁住其中一个的时候,必须连带地将其他的对象都上锁.
    • 为每一个对象都加上一个锁是很繁琐的.
    • 粗粒度锁是覆盖多个对象的单个锁.
      • 简化了加锁行为.
      • 且不必为了给它们加锁而加载所有对象.
  • 运行机制
    • 为一组对象建立一个控制点.
      • 使用乐观离线锁让组中每个对象共享一个版本号来建立一个控制点.
        • 增加这个版本号时,就成为一个锁住组中所有对象的共享锁.
        • 需要在模型中指定该组的每个对象.
        • 共享的悲观离线锁要求组中每个对象共享某种锁标记.
          • 通过这个锁标记来锁住它们.
          • 一个共享的版本对象就是最好的锁标记.
      • 作为数据修改的基本单位的一组相关对象可看成一个aggregate聚集.
        • 每个聚集有唯一的,提供了对集合中各成员访问的根对象.
        • 以及定义聚集中包含了什么的边界对象.
        • 锁住根对象的根锁提供了聚集的单一控制点.
        • 需要为聚集对象提供到根对象的导航方法.
  • 使用时机
    • 最明显的理由是为了满足业务需要.
    • 好处是以很小的代价来获取和释放锁.
  • Implicit Lock隐含锁
    • 允许框架或层超类型获取离线锁.
      • 必须的加锁认为不应该显示地由开发人员完成,而是隐含地由应用完成.
    • 运行机制
      • 实现隐含锁就是要分解代码.在APP框架中完成那些绝对不能忽略的锁机制.
      • 第一步是列出业务事务中那些任务必须在加锁情况下完成.

 

转载于:https://www.cnblogs.com/robyn/p/3528316.html

### Coarse-Grained Object Detection Methods and Information Coarse-grained object detection refers to the identification of objects at a higher level or broader category rather than specific instances. This approach is beneficial when detailed instance-level annotations are not available or necessary. In coarse-grained object detection, context plays an essential role as it helps in identifying general categories without requiring precise boundaries or fine details about individual objects[^1]. For example, instead of detecting different breeds of dogs, one might aim to detect all animals within a certain class such as "dog." One notable method that addresses this challenge indirectly by leveraging transfer learning from base classes to new ones while using minimal seed annotations for refinement can be considered relevant here[^2]. Although primarily focused on few-shot scenarios where only limited labeled examples exist per novel category, principles like these could potentially apply towards defining strategies suitable for coarse-grained tasks too. Another significant contribution comes from real-time unified detectors which have demonstrated effectiveness across various scales including those typical of coarser categorizations[^3]. These models process entire images once through convolutional layers before making predictions over multiple bounding boxes simultaneously; thus they inherently support varying levels of granularity depending upon how training data was prepared. Furthermore, advancements made toward handling large numbers of object types efficiently also contribute valuable insights into designing systems capable of performing well under conditions similar to what would characterize coarse-grained settings[^4]. Lastly, combining strengths between faster region-based convnets with you-only-look-once architectures has shown promise in enhancing overall performance metrics significantly even beyond initial expectations set forth during development phases[^5]. ```python import torch from torchvision.models.detection import fasterrcnn_resnet50_fpn def load_coarse_grained_detector(): model = fasterrcnn_resnet50_fpn(pretrained=True) # Adjusting classification head for fewer output classes representing broad categories. num_classes = 10 # Example number of coarse categories in_features = model.roi_heads.box_predictor.cls_score.in_features model.roi_heads.box_predictor = torch.nn.Linear(in_features, num_classes) return model.eval() detector = load_coarse_grained_detector() ``` --related questions-- 1. How does contextual information influence accuracy improvements in coarse-grained versus fine-grained object detection? 2. What modifications should be applied to existing deep learning frameworks to better suit coarse-grained recognition needs? 3. Can pre-trained networks designed originally for finer distinctions effectively adapt to perform robustly in more generalized classifications after retraining? 4. Are there any particular datasets specifically curated for evaluating algorithms targeting coarse-grained visual understanding? 5. Which architectural components play critical roles in achieving high precision rates among broadly defined target groups?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值