Watchmen CodeForces - 650A

本文解析了CodeForces-650A题目“Watchmen”,介绍了如何计算平面上点对间距离,使用Manhattan距离与Euclidean距离相等的条件,通过高效的数据结构map来统计相同距离的点对数量。

Watchmen CodeForces - 650A 

 

Watchmen are in a danger and Doctor Manhattan together with his friend Daniel Dreiberg should warn them as soon as possible. There are n watchmen on a plane, the i-th watchman is located at point (xi, yi).

They need to arrange a plan, but there are some difficulties on their way. As you know, Doctor Manhattan considers the distance between watchmen i and j to be |xi - xj| + |yi - yj|. Daniel, as an ordinary person, calculates the distance using the formula .

The success of the operation relies on the number of pairs (i, j) (1 ≤ i < j ≤ n), such that the distance between watchman i and watchmen j calculated by Doctor Manhattan is equal to the distance between them calculated by Daniel. You were asked to compute the number of such pairs.

Input

The first line of the input contains the single integer n (1 ≤ n ≤ 200 000) — the number of watchmen.

Each of the following n lines contains two integers xi and yi (|xi|, |yi| ≤ 109).

Some positions may coincide.

Output

Print the number of pairs of watchmen such that the distance between them calculated by Doctor Manhattan is equal to the distance calculated by Daniel.

Examples

Input
3
1 1
7 5
1 5
Output
2
Input
6
0 0
0 1
0 2
-1 1
0 1
1 1
Output
11

Note

In the first sample, the distance between watchman 1 and watchman 2 is equal to |1 - 7| + |1 - 5| = 10 for Doctor Manhattan and  for Daniel. For pairs (1, 1), (1, 5) and (7, 5), (1, 5) Doctor Manhattan and Daniel will calculate the same distances.

题意:给出n个点的坐标(xi,yi);问有多少对点|xi-xj|+|yi-yj| == sqrt( (xi-xj)^2 + (yi-yj)^2 )。 注意:题中有些点的和重合的。

题解:map存存状态,加加减减就好了

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<sstream>
#include<cmath>
#include<stack>
#include<map>
#include<cstdlib>
#include <vector>
#include<queue>
using namespace std;

#define ll long long
#define llu unsigned long long
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
const int maxn =  1e5+5;
const int mod = 1e9+7;

map<ll,ll>mpx;
map<ll,ll>mpy;
map<pair<ll,ll>,ll>mp;
int main()
{
    mpx.clear();
    mpy.clear();
    mp.clear();
    int n;
    ll a,b,ans=0,num=0;
    scanf("%d",&n);
    for(int i=0;i<n;i++)
    {
        scanf("%lld %lld",&a,&b);
        num+=mp[make_pair(a,b)];
        mp[make_pair(a,b)]++;
        ans+=mpx[a];
        mpx[a]++;
        ans+=mpy[b];
        mpy[b]++;
        //printf("%lld %lld\n",ans,num);
    }
    printf("%lld\n",ans-num);
    return 0;
}

 

转载于:https://www.cnblogs.com/smallhester/p/10327474.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值