LeetCode_Triangle

本文介绍如何使用动态规划解决最小路径和问题。通过分析三角形中从顶点到底边的最短路径总和,展示了算法的实现过程,并提供了一个C/C++代码示例。重点在于理解动态规划在解决此类问题时的优势,以及如何优化空间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

  分析:This problem is more likely to be a (dynamic programming) DP problem,
where a[n][i] = a[n][i]+min(a[n-1][i], a[n-1][i-1]).
Note that in this problem, "adjacent" of a[i][j] means a[i-1][j] and a[i-1][j-1], if available(not out of bound), while a[i-1][j+1] is not "adjacent" element.

The minimum of the last line after computing is the final result.

class Solution {
public:
    int minimumTotal(vector<vector<int> > &triangle) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        int len = triangle.size();
        for( int i = 1; i< len ; i++)
          for( int j = 0; j < triangle[i].size(); j++){
            if(j == 0){
                triangle[i][j] += triangle[i-1][j];
                continue;
            }
            if(j == triangle[i].size() -1){
                triangle[i][j] += triangle[i-1][j-1];
                continue;
            }
            int val = triangle[i-1][j] < triangle[i-1][j-1] ? triangle[i-1][j] 
                                            :triangle[i-1][j-1] ;
           triangle[i][j] += val;
          }
          
        int minval = triangle[len-1][0];
        
        for(int i = 1 ; i< triangle[len-1].size() ; i++){
            if(minval > triangle[len-1][i] ) minval = triangle[len-1][i];
        }
        
        return minval;
    }
};

reference :http://yucoding.blogspot.com/2013/04/leetcode-question-112-triangle.html

转载于:https://www.cnblogs.com/graph/p/3251518.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值