POJ 3666 Making the Grade DP

本文介绍了一种求解序列转换最小成本的方法,通过排序和动态规划技术实现,旨在找到使序列变为单调递增或递减所需的最低调整费用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

A straight dirt road connects two fields on FJ's farm, but it changes elevation more than FJ would like. His cows do not mind climbing up or down a single slope, but they are not fond of an alternating succession of hills and valleys. FJ would like to add and remove dirt from the road so that it becomes one monotonic slope (either sloping up or down).

You are given N integers A1, ... , AN (1 ≤ N ≤ 2,000) describing the elevation (0 ≤ Ai ≤ 1,000,000,000) at each of N equally-spaced positions along the road, starting at the first field and ending at the other. FJ would like to adjust these elevations to a new sequence B1, . ... , BN that is either nonincreasing or nondecreasing. Since it costs the same amount of money to add or remove dirt at any position along the road, the total cost of modifying the road is

|AB1| + |AB2| + ... + |AN - BN |

Please compute the minimum cost of grading his road so it becomes a continuous slope. FJ happily informs you that signed 32-bit integers can certainly be used to compute the answer.

Input

* Line 1: A single integer: N
* Lines 2..N+1: Line i+1 contains a single integer elevation: Ai

Output

* Line 1: A single integer that is the minimum cost for FJ to grade his dirt road so it becomes nonincreasing or nondecreasing in elevation.

Sample Input

7
1
3
2
4
5
3
9

Sample Output

3

Source

 

题意:将一个序列变为不递减或不递增序列的最小花费。

思路:由于题目要求并不是严格递增或递减,那么可以想到将一个数变化的最少花费肯定是变为数列中已有的第一个比它大或比它小的数。所以先排序,dp[i][j]代表选取到第i个,最后一位(最大)的是第a[j]的最小花费,转移方程为 dp[i][j] = min(dp[i-1][1~j]) + |a[i]-b[j]|。

 

 

/** @Date    : 2016-11-03-18.59
  * @Author  : Lweleth (SoungEarlf@gmail.com)
  * @Link    : https://github.com/
  * @Version :
  */
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
#include <utility>
#include <vector>
#include <map>
#include <set>
#include <math.h>
#include <string>
#include <stack>
#include <queue>
#define LL long long
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std;

const int INF = 0x3f3f3f3f;
const int N = 1e5+2000;

int dp[2010][2010];
int a[2010];
int b[2010];
int main()
{

    int n;
    while(cin >> n)
    {
        for(int i = 1; i <= n; i++)
        {
            scanf("%d", a + i);
            b[i] = a[i];
        }
        sort(b + 1, b + n + 1);
        a[0] = 0;
        int ans = INF, ans1 = INF;
        int mi, mii;

        for(int i = 0; i<= n; i++)
        {
            mi = INF;
            for(int j = 1; j <= n; j++)
            {
                if(i)
                {
                    dp[i][j] = INF;
                    dp[i][j] = min(dp[i-1][j], mi) + abs(a[i] - b[j]);
                    if(mi > dp[i-1][j])
                        mi = dp[i-1][j];
                    if(i == n)
                        ans = min(dp[n][j],ans);//注意这里取最小值
                }
                else dp[i][j] = 0;
            }
        }
        for(int i = 0; i<= n; i++)
        {
            mii = INF;
            for(int j = 1; j <= n; j++)
            {
                if(i)
                {
                    dp[i][j] = INF;
                    dp[i][j] = min(dp[i-1][j], mii) + abs(a[i] - b[n-j+1]);
                    if(mii > dp[i-1][j])
                        mii = dp[i-1][j];
                    if(i == n)
                        ans1 = min(dp[n][j],ans1);//注意这里取最小值
                }
                else dp[i][j] = 0;
            }
        }
        for(int i = 1; i <= n; i++)
            ans1 = min(dp[n][i],ans1);

        printf("%d\n", min(ans,ans1));
    }
    return 0;
}

转载于:https://www.cnblogs.com/Yumesenya/p/6109106.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值